Download jvm-testing JAR file with all dependencies
pact-jvm-provider-lein_2.11 from group au.com.dius (version 3.5.0-beta.2)
# Leiningen plugin to verify a provider [version 2.2.14+, 3.0.3+]
Leiningen plugin for verifying pacts against a provider. The plugin provides a `pact-verify` task which will verify all
configured pacts against your provider.
## To Use It
### 1. Add the plugin to your project plugins, preferably in it's own profile.
```clojure
:profiles {
:pact {
:plugins [[au.com.dius/pact-jvm-provider-lein_2.11 "3.2.11" :exclusions [commons-logging]]]
:dependencies [[ch.qos.logback/logback-core "1.1.3"]
[ch.qos.logback/logback-classic "1.1.3"]
[org.apache.httpcomponents/httpclient "4.4.1"]]
}}}
```
### 2. Define the pacts between your consumers and providers
You define all the providers and consumers within the `:pact` configuration element of your project.
```clojure
:pact {
:service-providers {
; You can define as many as you need, but each must have a unique name
:provider1 {
; All the provider properties are optional, and have sensible defaults (shown below)
:protocol "http"
:host "localhost"
:port 8080
:path "/"
:has-pact-with {
; Again, you can define as many consumers for each provider as you need, but each must have a unique name
:consumer1 {
; pact file can be either a path or an URL
:pact-file "path/to/provider1-consumer1-pact.json"
}
}
}
}
}
```
### 3. Execute `lein with-profile pact pact-verify`
You will have to have your provider running for this to pass.
## Enabling insecure SSL
For providers that are running on SSL with self-signed certificates, you need to enable insecure SSL mode by setting
`:insecure true` on the provider.
```clojure
:pact {
:service-providers {
:provider1 {
:protocol "https"
:host "localhost"
:port 8443
:insecure true
:has-pact-with {
:consumer1 {
:pact-file "path/to/provider1-consumer1-pact.json"
}
}
}
}
}
```
## Specifying a custom trust store
For environments that are running their own certificate chains:
```clojure
:pact {
:service-providers {
:provider1 {
:protocol "https"
:host "localhost"
:port 8443
:trust-store "relative/path/to/trustStore.jks"
:trust-store-password "changeme"
:has-pact-with {
:consumer1 {
:pact-file "path/to/provider1-consumer1-pact.json"
}
}
}
}
}
```
`:trust-store` is relative to the current working (build) directory. `:trust-store-password` defaults to `changeit`.
NOTE: The hostname will still be verified against the certificate.
## Modifying the requests before they are sent
Sometimes you may need to add things to the requests that can't be persisted in a pact file. Examples of these would
be authentication tokens, which have a small life span. The Leiningen plugin provides a request filter that can be
set to an anonymous function on the provider that will be called before the request is made. This function will receive the HttpRequest
object as a parameter.
```clojure
:pact {
:service-providers {
:provider1 {
; function that adds an Authorization header to each request
:request-filter #(.addHeader % "Authorization" "oauth-token eyJhbGciOiJSUzI1NiIsIm...")
:has-pact-with {
:consumer1 {
:pact-file "path/to/provider1-consumer1-pact.json"
}
}
}
}
}
```
__*Important Note:*__ You should only use this feature for things that can not be persisted in the pact file. By modifying
the request, you are potentially modifying the contract from the consumer tests!
## Modifying the HTTP Client Used
The default HTTP client is used for all requests to providers (created with a call to `HttpClients.createDefault()`).
This can be changed by specifying a function assigned to `:create-client` on the provider that returns a `CloseableHttpClient`.
The function will receive the provider info as a parameter.
## Turning off URL decoding of the paths in the pact file [version 3.3.3+]
By default the paths loaded from the pact file will be decoded before the request is sent to the provider. To turn this
behaviour off, set the system property `pact.verifier.disableUrlPathDecoding` to `true`.
__*Important Note:*__ If you turn off the url path decoding, you need to ensure that the paths in the pact files are
correctly encoded. The verifier will not be able to make a request with an invalid encoded path.
## Plugin Properties
The following plugin options can be specified on the command line:
|Property|Description|
|--------|-----------|
|:pact.showStacktrace|This turns on stacktrace printing for each request. It can help with diagnosing network errors|
|:pact.showFullDiff|This turns on displaying the full diff of the expected versus actual bodies [version 3.3.6+]|
|:pact.filter.consumers|Comma seperated list of consumer names to verify|
|:pact.filter.description|Only verify interactions whose description match the provided regular expression|
|:pact.filter.providerState|Only verify interactions whose provider state match the provided regular expression. An empty string matches interactions that have no state|
Example, to run verification only for a particular consumer:
```
$ lein with-profile pact pact-verify :pact.filter.consumers=consumer2
```
## Provider States
For each provider you can specify a state change URL to use to switch the state of the provider. This URL will
receive the `providerState` description from the pact file before each interaction via a POST. The `:state-change-uses-body`
controls if the state is passed in the request body or as a query parameter.
These values can be set at the provider level, or for a specific consumer. Consumer values take precedent if both are given.
```clojure
:pact {
:service-providers {
:provider1 {
:state-change-url "http://localhost:8080/tasks/pactStateChange"
:state-change-uses-body false ; defaults to true
:has-pact-with {
:consumer1 {
:pact-file "path/to/provider1-consumer1-pact.json"
}
}
}
}
}
```
If the `:state-change-uses-body` is not specified, or is set to true, then the provider state description will be sent as
JSON in the body of the request. If it is set to false, it will passed as a query parameter.
As for normal requests (see Modifying the requests before they are sent), a state change request can be modified before
it is sent. Set `:state-change-request-filter` to an anonymous function on the provider that will be called before the request is made.
## Filtering the interactions that are verified
You can filter the interactions that are run using three properties: `:pact.filter.consumers`, `:pact.filter.description` and `:pact.filter.providerState`.
Adding `:pact.filter.consumers=consumer1,consumer2` to the command line will only run the pact files for those
consumers (consumer1 and consumer2). Adding `:pact.filter.description=a request for payment.*` will only run those interactions
whose descriptions start with 'a request for payment'. `:pact.filter.providerState=.*payment` will match any interaction that
has a provider state that ends with payment, and `:pact.filter.providerState=` will match any interaction that does not have a
provider state.
## Starting and shutting down your provider
For the pact verification to run, the provider needs to be running. Leiningen provides a `do` task that can chain tasks
together. So, by creating a `start-app` and `terminate-app` alias, you could so something like:
$ lein with-profile pact do start-app, pact-verify, terminate-app
However, if the pact verification fails the build will abort without running the `terminate-app` task. To have the
start and terminate tasks always run regardless of the state of the verification, you can assign them to `:start-provider-task`
and `:terminate-provider-task` on the provider.
```clojure
:aliases {"start-app" ^{:doc "Starts the app"}
["tasks to start app ..."] ; insert tasks to start the app here
"terminate-app" ^{:doc "Kills the app"}
["tasks to terminate app ..."] ; insert tasks to stop the app here
}
:pact {
:service-providers {
:provider1 {
:start-provider-task "start-app"
:terminate-provider-task "terminate-app"
:has-pact-with {
:consumer1 {
:pact-file "path/to/provider1-consumer1-pact.json"
}
}
}
}
}
```
Then you can just run:
$ lein with-profile pact pact-verify
and the `start-app` and `terminate-app` tasks will run before and after the provider verification.
## Specifying the provider hostname at runtime [3.0.4+]
If you need to calculate the provider hostname at runtime (for instance it is run as a new docker container or
AWS instance), you can give an anonymous function as the provider host that returns the host name. The function
will receive the provider information as a parameter.
```clojure
:pact {
:service-providers {
:provider1 {
:host #(calculate-host-name %)
:has-pact-with {
:consumer1 {
:pact-file "path/to/provider1-consumer1-pact.json"
}
}
}
}
}
```
pact-jvm-provider-junit_2.11 from group au.com.dius (version 3.5.0-beta.2)
# Pact junit runner
## Overview
Library provides ability to play contract tests against a provider service in JUnit fashionable way.
Supports:
- Out-of-the-box convenient ways to load pacts
- Easy way to change assertion strategy
- **org.junit.BeforeClass**, **org.junit.AfterClass** and **org.junit.ClassRule** JUnit annotations, that will be run
once - before/after whole contract test suite.
- **org.junit.Before**, **org.junit.After** and **org.junit.Rule** JUnit annotations, that will be run before/after
each test of an interaction.
- **au.com.dius.pact.provider.junit.State** custom annotation - before each interaction that requires a state change,
all methods annotated by `@State` with appropriate the state listed will be invoked. These methods must either take
no parameters or a single Map parameter.
## Example of HTTP test
```java
@RunWith(PactRunner.class) // Say JUnit to run tests with custom Runner
@Provider("myAwesomeService") // Set up name of tested provider
@PactFolder("pacts") // Point where to find pacts (See also section Pacts source in documentation)
public class ContractTest {
// NOTE: this is just an example of embedded service that listens to requests, you should start here real service
@ClassRule //Rule will be applied once: before/after whole contract test suite
public static final ClientDriverRule embeddedService = new ClientDriverRule(8332);
@BeforeClass //Method will be run once: before whole contract test suite
public static void setUpService() {
//Run DB, create schema
//Run service
//...
}
@Before //Method will be run before each test of interaction
public void before() {
// Rest data
// Mock dependent service responses
// ...
embeddedService.addExpectation(
onRequestTo("/data"), giveEmptyResponse()
);
}
@State("default", "no-data") // Method will be run before testing interactions that require "default" or "no-data" state
public void toDefaultState() {
// Prepare service before interaction that require "default" state
// ...
System.out.println("Now service in default state");
}
@State("with-data") // Method will be run before testing interactions that require "with-data" state
public void toStateWithData(Map data) {
// Prepare service before interaction that require "with-data" state. The provider state data will be passed
// in the data parameter
// ...
System.out.println("Now service in state using data " + data);
}
@TestTarget // Annotation denotes Target that will be used for tests
public final Target target = new HttpTarget(8332); // Out-of-the-box implementation of Target (for more information take a look at Test Target section)
}
```
## Example of AMQP Message test
```java
@RunWith(PactRunner.class) // Say JUnit to run tests with custom Runner
@Provider("myAwesomeService") // Set up name of tested provider
@PactBroker(host="pactbroker", port = "80")
public class ConfirmationKafkaContractTest {
@TestTarget // Annotation denotes Target that will be used for tests
public final Target target = new AmqpTarget(); // Out-of-the-box implementation of Target (for more information take a look at Test Target section)
@BeforeClass //Method will be run once: before whole contract test suite
public static void setUpService() {
//Run DB, create schema
//Run service
//...
}
@Before //Method will be run before each test of interaction
public void before() {
// Message data preparation
// ...
}
@PactVerifyProvider('an order confirmation message')
String verifyMessageForOrder() {
Order order = new Order()
order.setId(10000004)
order.setPrice(BigDecimal.TEN)
order.setUnits(15)
def message = new ConfirmationKafkaMessageBuilder()
.withOrder(order)
.build()
JsonOutput.toJson(message)
}
}
```
## Pact source
The Pact runner will automatically collect pacts based on annotations on the test class. For this purpose there are 3
out-of-the-box options (files from a directory, files from a set of URLs or a pact broker) or you can easily add your
own Pact source.
**Note:** You can only define one source of pacts per test class.
### Download pacts from a pact-broker
To use pacts from a Pact Broker, annotate the test class with `@PactBroker(host="host.of.pact.broker.com", port = "80")`.
From _version 3.2.2/2.4.3+_ you can also specify the protocol, which defaults to "http".
The pact broker will be queried for all pacts with the same name as the provider annotation.
For example, test all pacts for the "Activity Service" in the pact broker:
```java
@RunWith(PactRunner.class)
@Provider("Activity Service")
@PactBroker(host = "localhost", port = "80")
public class PactJUnitTest {
@TestTarget
public final Target target = new HttpTarget(5050);
}
```
#### _Version 3.2.3/2.4.4+_ - Using Java System properties
The pact broker loader was updated to allow system properties to be used for the hostname, port or protocol. The port
was changed to a string to allow expressions to be set.
To use a system property or environment variable, you can place the property name in `${}` expression de-markers:
```java
@PactBroker(host="${pactbroker.hostname}", port = "80")
```
You can provide a default value by separating the property name with a colon (`:`):
```java
@PactBroker(host="${pactbroker.hostname:localhost}", port = "80")
```
#### _Version 3.5.3+_ - More Java System properties
The default values of the `@PactBroker` annotation now enable variable interpolation.
The following keys may be managed through the environment
* `pactbroker.host`
* `pactbroker.port`
* `pactbroker.protocol`
* `pactbroker.tags` (comma separated)
* `pactbroker.auth.scheme`
* `pactbroker.auth.username`
* `pactbroker.auth.password`
#### _Version 3.2.4/2.4.6+_ - Using tags with the pact broker
The pact broker allows different versions to be tagged. To load all the pacts:
```java
@PactBroker(host="pactbroker", port = "80", tags = {"latest", "dev", "prod"})
```
The default value for tags is `latest` which is not actually a tag but instead corresponds to the latest version ignoring the tags. If there are multiple consumers matching the name specified in the provider annotation then the latest pact for each of the consumers is loaded.
For any other value the latest pact tagged with the specified tag is loaded.
Specifying multiple tags is an OR operation. For example if you specify `tags = {"dev", "prod"}` then both the latest pact file tagged with `dev` and the latest pact file taggged with `prod` is loaded.
#### _Version 3.3.4/2.4.19+_ - Using basic auth with the with the pact broker
You can use basic authentication with the `@PactBroker` annotation by setting the `authentication` value to a `@PactBrokerAuth`
annotation. For example:
```java
@PactBroker(host = "${pactbroker.url:localhost}", port = "1234", tags = {"latest", "prod", "dev"},
authentication = @PactBrokerAuth(username = "test", password = "test"))
```
The `username` and `password` values also take Java system property expressions.
### Pact Url
To use pacts from urls annotate the test class with
```java
@PactUrl(urls = {"http://build.server/zoo_app-animal_service.json"} )
```
### Pact folder
To use pacts from a resource folder of the project annotate test class with
```java
@PactFolder("subfolder/in/resource/directory")
```
### Custom pacts source
It's possible to use a custom Pact source. For this, implement interface `au.com.dius.pact.provider.junit.loader.PactLoader`
and annotate the test class with `@PactSource(MyOwnPactLoader.class)`. **Note:** class `MyOwnPactLoader` must have a default empty constructor or a constructor with one argument of class `Class` which at runtime will be the test class so you can get custom annotations of test class.
### Filtering the interactions that are verified [version 3.5.3+]
By default, the pact runner will verify all pacts for the given provider. You can filter the pacts and interactions by
the following methods.
#### Filtering by Consumer
You can run only those pacts for a particular consumer by adding a `@Consumer` annotation to the test class.
For example:
```java
@RunWith(PactRunner.class)
@Provider("Activity Service")
@Consumer("Activity Consumer")
@PactBroker(host = "localhost", port = "80")
public class PactJUnitTest {
@TestTarget
public final Target target = new HttpTarget(5050);
}
```
#### Filtering by Provider State
You can filter the interactions that are executed by adding a `@PactFilter` annotation to your test class. The pact
filter annotation will then only verify interactions that have a matching provider state. You can provide multiple
states to match with.
For example:
```java
@RunWith(PactRunner.class)
@Provider("Activity Service")
@PactBroker(host = "localhost", port = "80")
@PactFilter('Activity 100 exists in the database')
public class PactJUnitTest {
@TestTarget
public final Target target = new HttpTarget(5050);
}
```
You can also use regular expressions with the filter [version 3.5.3+]. For example:
```java
@RunWith(PactRunner.class)
@PactFilter('Activity \\d+ exists in the database')
public class PactJUnitTest {
}
```
### Setting the test to not fail when no pacts are found [version 3.5.3+]
By default the pact runner will fail the verification test if no pact files are found to verify. To change the
failure into a warning, add a `@IgnoreNoPactsToVerify` annotation to your test class.
## Test target
The field in test class of type `au.com.dius.pact.provider.junit.target.Target` annotated with `au.com.dius.pact.provider.junit.target.TestTarget`
will be used for actual Interaction execution and asserting of contract.
**Note:** there must be exactly 1 such field, otherwise an `InitializationException` will be thrown.
### HttpTarget
`au.com.dius.pact.provider.junit.target.HttpTarget` - out-of-the-box implementation of `au.com.dius.pact.provider.junit.target.Target`
that will play pacts as http request and assert response from service by matching rules from pact.
_Version 3.2.2/2.4.3+_ you can also specify the protocol, defaults to "http".
### AmqpTarget
`au.com.dius.pact.provider.junit.target.AmqpTarget` - out-of-the-box implementation of `au.com.dius.pact.provider.junit.target.Target`
that will play pacts as an AMQP message and assert response from service by matching rules from pact.
#### Modifying the requests before they are sent [Version 3.2.3/2.4.5+]
Sometimes you may need to add things to the requests that can't be persisted in a pact file. Examples of these would
be authentication tokens, which have a small life span. The HttpTarget supports request filters by annotating methods
on the test class with `@TargetRequestFilter`. These methods must be public void methods that take a single HttpRequest
parameter.
For example:
```java
@TargetRequestFilter
public void exampleRequestFilter(HttpRequest request) {
request.addHeader("Authorization", "OAUTH hdsagasjhgdjashgdah...");
}
```
__*Important Note:*__ You should only use this feature for things that can not be persisted in the pact file. By modifying
the request, you are potentially modifying the contract from the consumer tests!
#### Turning off URL decoding of the paths in the pact file [version 3.3.3+]
By default the paths loaded from the pact file will be decoded before the request is sent to the provider. To turn this
behaviour off, set the system property `pact.verifier.disableUrlPathDecoding` to `true`.
__*Important Note:*__ If you turn off the url path decoding, you need to ensure that the paths in the pact files are
correctly encoded. The verifier will not be able to make a request with an invalid encoded path.
### Custom Test Target
It's possible to use custom `Target`, for that interface `Target` should be implemented and this class can be used instead of `HttpTarget`.
# Verification Reports [versions 3.2.7/2.4.9+]
The default test behaviour is to display the verification being done to the console, and pass or fail the test via the normal
JUnit mechanism. From versions 3.2.7/2.4.9+, additional reports can be generated from the tests.
## Enabling additional reports via annotations on the test classes
A `@VerificationReports` annotation can be added to any pact test class which will control the verification output. The
annotation takes a list report types and an optional report directory (defaults to "target/pact/reports").
The currently supported report types are `console`, `markdown` and `json`.
For example:
```java
@VerificationReports({"console", "markdown"})
public class MyPactTest {
```
will enable the markdown report in addition to the normal console output. And,
```java
@VerificationReports(value = {"markdown"}, reportDir = "/myreports")
public class MyPactTest {
```
will disable the normal console output and write the markdown reports to "/myreports".
## Enabling additional reports via Java system properties or environment variables
The additional reports can also be enabled with Java System properties or environment variables. The following two
properties have been introduced: `pact.verification.reports` and `pact.verification.reportDir`.
`pact.verification.reports` is the comma separated list of report types to enable (e.g. `console,json,markdown`).
`pact.verification.reportDir` is the directory to write reports to (defaults to "target/pact/reports").
## Additional Reports
The following report types are available in addition to console output (`console`, which is enabled by default):
`markdown`, `json`.
You can also provide a fully qualified classname as report so custom reports are also supported.
This class must implement `au.com.dius.pact.provider.reporters.VerifierReporter` interface in order to be correct custom implementation of a report.
# Publishing verification results to a Pact Broker [version 3.5.4+]
For pacts that are loaded from a Pact Broker, the results of running the verification can be published back to the
broker against the URL for the pact. You will be able to see the result on the Pact Broker home screen. You need to
set the version of the provider that is verified using the `pact.provider.version` system property.
To enable publishing of results, set the property `pact.verifier.publishResults` to `true` [version 3.5.18+].
instantsearch-insights-jvm from group com.algolia (version 3.3.1)
InstantSearch Android is a library providing widgets and helpers to help you build the best instant-search experience on Android with Algolia. It is built on top of Algolia's Kotlin API Client to provide you a high-level solution to quickly build various search interfaces.
pact-jvm-provider-gradle_2.11 from group au.com.dius (version 3.5.0-beta.2)
pact-jvm-provider-gradle
========================
Gradle plugin for verifying pacts against a provider.
The Gradle plugin creates a task `pactVerify` to your build which will verify all configured pacts against your provider.
## To Use It
### For Gradle versions prior to 2.1
#### 1.1. Add the pact-jvm-provider-gradle jar file to your build script class path:
```groovy
buildscript {
repositories {
mavenCentral()
}
dependencies {
classpath 'au.com.dius:pact-jvm-provider-gradle_2.10:3.2.4'
}
}
```
#### 1.2. Apply the pact plugin
```groovy
apply plugin: 'au.com.dius.pact'
```
### For Gradle versions 2.1+
```groovy
plugins {
id "au.com.dius.pact" version "3.2.4"
}
```
### 2. Define the pacts between your consumers and providers
```groovy
pact {
serviceProviders {
// You can define as many as you need, but each must have a unique name
provider1 {
// All the provider properties are optional, and have sensible defaults (shown below)
protocol = 'http'
host = 'localhost'
port = 8080
path = '/'
// Again, you can define as many consumers for each provider as you need, but each must have a unique name
hasPactWith('consumer1') {
// currently supports a file path using file() or a URL using url()
pactFile = file('path/to/provider1-consumer1-pact.json')
}
// Or if you have many pact files in a directory
hasPactsWith('manyConsumers') {
// Will define a consumer for each pact file in the directory.
// Consumer name is read from contents of pact file
pactFileLocation = file('path/to/pacts')
}
}
}
}
```
### 3. Execute `gradle pactVerify`
## Specifying the provider hostname at runtime
If you need to calculate the provider hostname at runtime, you can give a closure as the provider host.
```groovy
pact {
serviceProviders {
provider1 {
host = { lookupHostName() }
hasPactWith('consumer1') {
pactFile = file('path/to/provider1-consumer1-pact.json')
}
}
}
}
```
_Since version 3.3.2+/2.4.17+_ you can also give a closure as the provider port.
## Specifying the pact file or URL at runtime [versions 3.2.7/2.4.9+]
If you need to calculate the pact file or URL at runtime, you can give a Closure as the provider host.
```groovy
pact {
serviceProviders {
provider1 {
host = 'localhost'
hasPactWith('consumer1') {
pactFile = { lookupPactFile() }
}
}
}
}
```
## Starting and shutting down your provider
If you need to start-up or shutdown your provider, you can define a start and terminate task for each provider.
You could use the jetty tasks here if you provider is built as a WAR file.
```groovy
// This will be called before the provider task
task('startTheApp') << {
// start up your provider here
}
// This will be called after the provider task
task('killTheApp') << {
// kill your provider here
}
pact {
serviceProviders {
provider1 {
startProviderTask = startTheApp
terminateProviderTask = killTheApp
hasPactWith('consumer1') {
pactFile = file('path/to/provider1-consumer1-pact.json')
}
}
}
}
```
Following typical Gradle behaviour, you can set the provider task properties to the actual tasks, or to the task names
as a string (for the case when they haven't been defined yet).
## Enabling insecure SSL [version 2.2.8+]
For providers that are running on SSL with self-signed certificates, you need to enable insecure SSL mode by setting
`insecure = true` on the provider.
```groovy
pact {
serviceProviders {
provider1 {
insecure = true // allow SSL with a self-signed cert
hasPactWith('consumer1') {
pactFile = file('path/to/provider1-consumer1-pact.json')
}
}
}
}
```
## Specifying a custom trust store [version 2.2.8+]
For environments that are running their own certificate chains:
```groovy
pact {
serviceProviders {
provider1 {
trustStore = new File('relative/path/to/trustStore.jks')
trustStorePassword = 'changeit'
hasPactWith('consumer1') {
pactFile = file('path/to/provider1-consumer1-pact.json')
}
}
}
}
```
`trustStore` is either relative to the current working (build) directory. `trustStorePassword` defaults to `changeit`.
NOTE: The hostname will still be verified against the certificate.
## Modifying the HTTP Client Used [version 2.2.4+]
The default HTTP client is used for all requests to providers (created with a call to `HttpClients.createDefault()`).
This can be changed by specifying a closure assigned to createClient on the provider that returns a CloseableHttpClient. For example:
```groovy
pact {
serviceProviders {
provider1 {
createClient = { provider ->
// This will enable the client to accept self-signed certificates
HttpClients.custom().setSSLHostnameVerifier(new NoopHostnameVerifier())
.setSslcontext(new SSLContextBuilder().loadTrustMaterial(null, { x509Certificates, s -> true })
.build())
.build()
}
hasPactWith('consumer1') {
pactFile = file('path/to/provider1-consumer1-pact.json')
}
}
}
}
```
## Modifying the requests before they are sent
**NOTE on breaking change: Version 2.1.8+ uses Apache HttpClient instead of HttpBuilder so the closure will receive a
HttpRequest object instead of a request Map.**
Sometimes you may need to add things to the requests that can't be persisted in a pact file. Examples of these would
be authentication tokens, which have a small life span. The Pact Gradle plugin provides a request filter that can be
set to a closure on the provider that will be called before the request is made. This closure will receive the HttpRequest
prior to it being executed.
```groovy
pact {
serviceProviders {
provider1 {
requestFilter = { req ->
// Add an authorization header to each request
req.addHeader('Authorization', 'OAUTH eyJhbGciOiJSUzI1NiIsImN0eSI6ImFw...')
}
hasPactWith('consumer1') {
pactFile = file('path/to/provider1-consumer1-pact.json')
}
}
}
}
```
__*Important Note:*__ You should only use this feature for things that can not be persisted in the pact file. By modifying
the request, you are potentially modifying the contract from the consumer tests!
## Turning off URL decoding of the paths in the pact file [version 3.3.3+]
By default the paths loaded from the pact file will be decoded before the request is sent to the provider. To turn this
behaviour off, set the system property `pact.verifier.disableUrlPathDecoding` to `true`.
__*Important Note:*__ If you turn off the url path decoding, you need to ensure that the paths in the pact files are
correctly encoded. The verifier will not be able to make a request with an invalid encoded path.
## Project Properties
The following project properties can be specified with `-Pproperty=value` on the command line:
|Property|Description|
|--------|-----------|
|pact.showStacktrace|This turns on stacktrace printing for each request. It can help with diagnosing network errors|
|pact.showFullDiff|This turns on displaying the full diff of the expected versus actual bodies [version 3.3.6+]|
|pact.filter.consumers|Comma seperated list of consumer names to verify|
|pact.filter.description|Only verify interactions whose description match the provided regular expression|
|pact.filter.providerState|Only verify interactions whose provider state match the provided regular expression. An empty string matches interactions that have no state|
## Provider States
For a description of what provider states are, see the pact documentations: http://docs.pact.io/documentation/provider_states.html
### Using a state change URL
For each provider you can specify a state change URL to use to switch the state of the provider. This URL will
receive the providerState description from the pact file before each interaction via a POST. As for normal requests,
a request filter (`stateChangeRequestFilter`) can also be set to manipulate the request before it is sent.
```groovy
pact {
serviceProviders {
provider1 {
hasPactWith('consumer1') {
pactFile = file('path/to/provider1-consumer1-pact.json')
stateChangeUrl = url('http://localhost:8001/tasks/pactStateChange')
stateChangeUsesBody = false // defaults to true
stateChangeRequestFilter = { req ->
// Add an authorization header to each request
req.addHeader('Authorization', 'OAUTH eyJhbGciOiJSUzI1NiIsImN0eSI6ImFw...')
}
}
// or
hasPactsWith('consumers') {
pactFileLocation = file('path/to/pacts')
stateChangeUrl = url('http://localhost:8001/tasks/pactStateChange')
stateChangeUsesBody = false // defaults to true
}
}
}
}
```
If the `stateChangeUsesBody` is not specified, or is set to true, then the provider state description will be sent as
JSON in the body of the request. If it is set to false, it will passed as a query parameter.
#### Teardown calls for state changes [version 3.2.5/2.4.7+]
You can enable teardown state change calls by setting the property `stateChangeTeardown = true` on the provider. This
will add an `action` parameter to the state change call. The setup call before the test will receive `action=setup`, and
then a teardown call will be made afterwards to the state change URL with `action=teardown`.
### Using a Closure [version 2.2.2+]
You can set a closure to be called before each verification with a defined provider state. The closure will be
called with the state description from the pact file.
```groovy
pact {
serviceProviders {
provider1 {
hasPactWith('consumer1') {
pactFile = file('path/to/provider1-consumer1-pact.json')
// Load a fixture file based on the provider state and then setup some database
// data. Does not require a state change request so returns false
stateChange = { providerState ->
def fixture = loadFixtuerForProviderState(providerState)
setupDatabase(fixture)
}
}
}
}
}
```
#### Teardown calls for state changes [version 3.2.5/2.4.7+]
You can enable teardown state change calls by setting the property `stateChangeTeardown = true` on the provider. This
will add an `action` parameter to the state change closure call. The setup call before the test will receive `setup`,
as the second parameter, and then a teardown call will be made afterwards with `teardown` as the second parameter.
```groovy
pact {
serviceProviders {
provider1 {
hasPactWith('consumer1') {
pactFile = file('path/to/provider1-consumer1-pact.json')
// Load a fixture file based on the provider state and then setup some database
// data. Does not require a state change request so returns false
stateChange = { providerState, action ->
if (action == 'setup') {
def fixture = loadFixtuerForProviderState(providerState)
setupDatabase(fixture)
} else {
cleanupDatabase()
}
false
}
}
}
}
}
```
## Filtering the interactions that are verified
You can filter the interactions that are run using three project properties: `pact.filter.consumers`, `pact.filter.description` and `pact.filter.providerState`.
Adding `-Ppact.filter.consumers=consumer1,consumer2` to the command line will only run the pact files for those
consumers (consumer1 and consumer2). Adding `-Ppact.filter.description=a request for payment.*` will only run those interactions
whose descriptions start with 'a request for payment'. `-Ppact.filter.providerState=.*payment` will match any interaction that
has a provider state that ends with payment, and `-Ppact.filter.providerState=` will match any interaction that does not have a
provider state.
## Verifying pact files from a pact broker [version 3.1.1+/2.3.1+]
You can setup your build to validate against the pacts stored in a pact broker. The pact gradle plugin will query
the pact broker for all consumers that have a pact with the provider based on its name.
For example:
```groovy
pact {
serviceProviders {
provider1 {
hasPactsFromPactBroker('http://pact-broker:5000/')
}
}
}
```
This will verify all pacts found in the pact broker where the provider name is 'provider1'. If you need to set any
values on the consumers from the pact broker, you can add a Closure to configure them.
```groovy
pact {
serviceProviders {
provider1 {
hasPactsFromPactBroker('http://pact-broker:5000/') { consumer ->
stateChange = { providerState -> /* state change code here */ true }
}
}
}
}
```
**NOTE: Currently the pacts are fetched from the broker during the configuration phase of the build. This means that
if the broker is not available, you will not be able to run any Gradle tasks.** This should be fixed in a forth coming
release.
In the mean time, to only load the pacts when running the validate task, you can do something like:
```groovy
pact {
serviceProviders {
provider1 {
// Only load the pacts from the broker if the start tasks from the command line include pactVerify
if ('pactVerify' in gradle.startParameter.taskNames) {
hasPactsFromPactBroker('http://pact-broker:5000/') { consumer ->
stateChange = { providerState -> /* state change code here */ true }
}
}
}
}
}
```
### Using an authenticated Pact Broker
You can add the authentication details for the Pact Broker like so:
```groovy
pact {
serviceProviders {
provider1 {
hasPactsFromPactBroker('http://pact-broker:5000/', authentication: ['Basic', pactBrokerUser, pactBrokerPassword])
}
}
}
```
`pactBrokerUser` and `pactBrokerPassword` can be defined in the gradle properties.
## Verifying pact files from a S3 bucket [version 3.3.2+/2.4.17+]
Pact files stored in an S3 bucket can be verified by using an S3 URL to the pact file. I.e.,
```groovy
pact {
serviceProviders {
provider1 {
hasPactWith('consumer1') {
pactFile = 's3://bucketname/path/to/provider1-consumer1-pact.json'
}
}
}
}
```
**NOTE:** you can't use the `url` function with S3 URLs, as the URL and URI classes from the Java SDK
don't support URLs with the s3 scheme.
# Publishing pact files to a pact broker [version 2.2.7+]
The pact gradle plugin provides a `pactPublish` task that can publish all pact files in a directory
to a pact broker. To use it, you need to add a publish configuration to the pact configuration that defines the
directory where the pact files are and the URL to the pact broker.
For example:
```groovy
pact {
publish {
pactDirectory = '/pact/dir' // defaults to $buildDir/pacts
pactBrokerUrl = 'http://pactbroker:1234'
}
}
```
_NOTE:_ The pact broker requires a version for all published pacts. The `pactPublish` task will use the version of the
gradle project by default. Make sure you have set one otherwise the broker will reject the pact files.
_Version 3.2.2/2.4.3+_ you can override the version in the publish block.
## Publishing to an authenticated pact broker
To publish to a broker protected by basic auth, include the username/password in the `pactBrokerUrl`.
For example:
```groovy
pact {
publish {
pactBrokerUrl = 'https://username:[email protected]'
}
}
```
### [version 3.3.9+]
You can add the username and password as properties since version 3.3.9+
```groovy
pact {
publish {
pactBrokerUrl = 'https://mypactbroker.com'
pactBrokerUsername = 'username'
pactBrokerPassword = 'password'
}
}
```
# Verifying a message provider [version 2.2.12+]
The Gradle plugin has been updated to allow invoking test methods that can return the message contents from a message
producer. To use it, set the way to invoke the verification to `ANNOTATED_METHOD`. This will allow the pact verification
task to scan for test methods that return the message contents.
Add something like the following to your gradle build file:
```groovy
pact {
serviceProviders {
messageProvider {
verificationType = 'ANNOTATED_METHOD'
packagesToScan = ['au.com.example.messageprovider.*'] // This is optional, but leaving it out will result in the entire
// test classpath being scanned
hasPactWith('messageConsumer') {
pactFile = url('url/to/messagepact.json')
}
}
}
}
```
Now when the `pactVerify` task is run, will look for methods annotated with `@PactVerifyProvider` in the test classpath
that have a matching description to what is in the pact file.
```groovy
class ConfirmationKafkaMessageBuilderTest {
@PactVerifyProvider('an order confirmation message')
String verifyMessageForOrder() {
Order order = new Order()
order.setId(10000004)
order.setExchange('ASX')
order.setSecurityCode('CBA')
order.setPrice(BigDecimal.TEN)
order.setUnits(15)
order.setGst(new BigDecimal('15.0'))
odrer.setFees(BigDecimal.TEN)
def message = new ConfirmationKafkaMessageBuilder()
.withOrder(order)
.build()
JsonOutput.toJson(message)
}
}
```
It will then validate that the returned contents matches the contents for the message in the pact file.
## Publishing to the Gradle Community Portal
To publish the plugin to the community portal:
$ ./gradlew :pact-jvm-provider-gradle_2.11:publishPlugins
# Verification Reports [versions 3.2.7/2.4.9+]
The default behaviour is to display the verification being done to the console, and pass or fail the build via the normal
Gradle mechanism. From versions 3.2.7/2.4.9+, additional reports can be generated from the verification.
## Enabling additional reports
The verification reports can be controlled by adding a reports section to the pact configuration in the gradle build file.
For example:
```groovy
pact {
reports {
defaultReports() // adds the standard console output
markdown // report in markdown format
json // report in json format
}
}
```
Any report files will be written to "build/reports/pact".
## Additional Reports
The following report types are available in addition to console output (which is enabled by default):
`markdown`, `json`.
0 downloads
pact-jvm-model from group au.com.dius (version 3.5.0-beta.2)
Pact model
==========
The model project is responsible for providing:
* a model to represent pacts
* serialization and deserialization
* comparison between two parts of the pact model
* conversion between the pact model and whatever third party libraries used by the pact-consumer and pact-provider requires
You should never need to include this project directly
pact-jvm-matchers_2.11 from group au.com.dius (version 3.5.0-beta.2)
Pact JVM Matchers
=================
Implements matchers for pact requests and responses.
pact-jvm-consumer_2.11 from group au.com.dius (version 3.5.0-beta.2)
Pact consumer
=============
Pact Consumer is used by projects that are consumers of an API.
Most projects will want to use pact-consumer via one of the test framework specific projects above.
If your favourite framework is not implemented, this module should give you all the hooks you need.
Please let us know if you build one and we'll link to you from the main page.
instantsearch-core-jvm from group com.algolia (version 3.3.1)
InstantSearch Android is a library providing widgets and helpers to help you build the best instant-search experience on Android with Algolia. It is built on top of Algolia's Kotlin API Client to provide you a high-level solution to quickly build various search interfaces.
pact-jvm-consumer-specs2_2.11 from group au.com.dius (version 3.5.0-beta.2)
pact-jvm-consumer-specs2
========================
## Specs2 Bindings for the pact-jvm library
## Dependency
In the root folder of your project in build.sbt add the line:
```
libraryDependencies += "au.com.dius" %% "pact-jvm-consumer-specs2" % "2.0.6"
```
## Usage
To author a test, extend `PactSpec`
Here is a simple example:
```
import au.com.dius.pact.consumer.PactSpec
class ExamplePactSpec extends PactSpec {
val consumer = "My Consumer"
val provider = "My Provider"
uponReceiving("a request for foo")
.matching(path = "/foo")
.willRespondWith(body = "{}")
.during { providerConfig =>
ConsumerService(providerConfig.url).simpleGet("/foo") must beEqualTo(200, Some("{}")).await
}
}
```
This spec will be run along with the rest of your specs2 unit tests and will output your pact json to
```
/target/pacts/<Consumer>_<Provider>.json
```
0 downloads
metrics-jvm from group com.yammer.metrics (version 3.0.0-BETA1)
rapidpm-microservice-modules-optionals-metrics-jvm from group org.rapidpm.microservice (version 0.1.0)
Group: org.rapidpm.microservice Artifact: rapidpm-microservice-modules-optionals-metrics-jvm
Show documentation Show source
Show documentation Show source
0 downloads
Artifact rapidpm-microservice-modules-optionals-metrics-jvm
Group org.rapidpm.microservice
Version 0.1.0
Group org.rapidpm.microservice
Version 0.1.0
stagemonitor-jvm from group org.stagemonitor (version 0.25.0)
an open source solution to application performance monitoring for java server applications
thrifty-runtime-jvm from group com.bendb.thrifty (version 3.1.0)
Provides a minimal Thrift runtime to support classes generated by Thrifty
jvm from group net.darkmist.alib (version 1.0.6)
allure-cucumber-jvm-adaptor from group ru.yandex.qatools.allure (version 1.5.1)
0 downloads
Page 18 from 20 (items total 295)
© 2015 - 2025 Weber Informatics LLC | Privacy Policy