Please wait. This can take some minutes ...
Many resources are needed to download a project. Please understand that we have to compensate our server costs. Thank you in advance.
Project price only 1 $
You can buy this project and download/modify it how often you want.
ai.catboost.spark.impl.FeatureImportanceCalcer.scala Maven / Gradle / Ivy
package ai.catboost.spark.impl
import scala.reflect.classTag
import collection.JavaConverters._
import collection.mutable
import org.apache.commons.lang3.tuple.Pair
import org.apache.spark.internal.Logging
import org.apache.spark.ml.linalg
import org.apache.spark.sql._
import org.apache.spark.sql.catalyst.encoders.{ExpressionEncoder,RowEncoder}
import org.apache.spark.sql.types._
import ai.catboost.spark._
import ai.catboost.CatBoostError
import ru.yandex.catboost.spark.catboost4j_spark.core.src.native_impl._
class FeatureImportanceCalcer extends Logging {
private[spark] def collectLeavesWeightsFromDataset(model: TFullModel, data: Pool) : Array[Double] = {
val dataForApplication = data.quantizeForModelApplicationImpl(model)
val leafCount = model.GetLeafCount()
val result = new Array[Double](leafCount)
dataForApplication.mapQuantizedPartitions(
selectedColumns=Seq("features", "weight", "groupWeight"),
includeEstimatedFeatures=false,
includePairsIfPresent=false,
dstColumnNames=Array[String](),
dstRowLength=0,
(
dataProvider: TDataProviderPtr,
estimatedDataProvider: TDataProviderPtr,
dstRows: mutable.ArrayBuffer[Array[Any]],
localExecutor: TLocalExecutor
) => {
val leavesWeights = native_impl.CollectLeavesStatisticsWrapper(
dataProvider,
model,
localExecutor
)
Iterator[linalg.DenseVector](new linalg.DenseVector(leavesWeights.toPrimitiveArray))
}
)(ExpressionEncoder(): Encoder[linalg.DenseVector], classTag[linalg.DenseVector]).toLocalIterator.asScala.foreach(
(partialResult : linalg.DenseVector) => {
for (i <- 0 until result.length) {
result(i) = result(i) + partialResult(i)
}
}
)
result
}
def prepareTrees(
model: TFullModel,
data: Pool, // can be null if not needed
preCalcMode: EPreCalcShapValues,
calcInternalValues: Boolean,
calcType: ECalcTypeShapValues,
calcShapValuesByLeaf: Boolean,
localExecutor: TLocalExecutor,
modelOutputType: EExplainableModelOutput=EExplainableModelOutput.Raw,
referenceData: Pool=null
) : TShapPreparedTrees = {
if ((calcType == ECalcTypeShapValues.Independent) || (referenceData != null)) {
throw new CatBoostError("Independent Tree SHAP values are not supported yet")
}
val needSumModelAndDatasetWeights = native_impl.HasNonZeroApproxForZeroWeightLeaf(model)
val leavesWeightsFromDataset = if (!model.HasLeafWeights() || needSumModelAndDatasetWeights) {
if (data == null) {
throw new CatBoostError(
"To calculate SHAP values, either a model with leaf weights, or a dataset are required."
)
}
collectLeavesWeightsFromDataset(model, data)
} else {
Array[Double]()
}
native_impl.PrepareTreesWithoutIndependent(
model,
if (data != null) { data.count } else { -1L },
needSumModelAndDatasetWeights,
leavesWeightsFromDataset,
preCalcMode,
calcInternalValues,
calcType,
calcShapValuesByLeaf,
localExecutor
)
}
def calcLossFunctionChange(model: TFullModel, data: Pool, calcType: ECalcTypeShapValues) : Array[Double] = {
if (data == null) {
throw new CatBoostError("LossFunctionChange feature importance requires dataset specified")
}
val maxObjectCount = native_impl.GetMaxObjectCountForFstrCalc(data.count, data.getFeatureCount)
val dataForLossChangeCalculation = if (maxObjectCount < data.count) {
val sampledData = data.sample(maxObjectCount.toDouble / data.count.toDouble)
logInfo(s"Selected ${sampledData.count} samples from ${data.count} for LossFunctionChange calculation.")
sampledData
} else {
data
}.quantizeForModelApplicationImpl(model).ensurePartitionByGroupsIfPresent()
val spark = data.data.sparkSession
val threadCount = SparkHelpers.getThreadCountForDriver(spark)
val localExecutor = new TLocalExecutor
localExecutor.Init(threadCount)
val preparedTrees = prepareTrees(
model,
dataForLossChangeCalculation,
EPreCalcShapValues.Auto,
calcInternalValues=true,
calcType=calcType,
calcShapValuesByLeaf=true,
localExecutor=localExecutor
)
val combinationClassFeatures = native_impl.GetCombinationClassFeatures(model)
val featuresCount = combinationClassFeatures.size().toInt
var aggregatedStats : Array[Double] = null
dataForLossChangeCalculation.mapQuantizedPartitions(
selectedColumns=Seq("groupId", "label", "features", "weight", "groupWeight"),
includeEstimatedFeatures=false,
includePairsIfPresent=true,
dstColumnNames=Array[String](),
dstRowLength=0,
(
dataProvider: TDataProviderPtr,
estimatedDataProvider: TDataProviderPtr,
dstRows: mutable.ArrayBuffer[Array[Any]],
localExecutor: TLocalExecutor
) => {
val result = native_impl.CalcFeatureEffectLossChangeMetricStatsWrapper(
model,
featuresCount,
preparedTrees,
dataProvider,
calcType,
localExecutor
)
Iterator[linalg.Vector](new linalg.DenseVector(result.toPrimitiveArray))
}
)(ExpressionEncoder(): Encoder[linalg.Vector], classTag[linalg.Vector]).toLocalIterator.asScala.foreach(
(partialResult : linalg.Vector) => {
if (aggregatedStats == null) {
aggregatedStats = partialResult.toArray
} else {
for (i <- 0 until aggregatedStats.length) {
aggregatedStats(i) = aggregatedStats(i) + partialResult(i)
}
}
}
)
native_impl.CalcFeatureEffectLossChangeFromScores(
model,
combinationClassFeatures,
aggregatedStats
).toPrimitiveArray
}
def calcPredictionValuesChange(model: TFullModel, data: Pool) : Array[Double] = {
val leavesWeightsFromDataset = if (data != null) {
logInfo("Used dataset leave statistics for fstr calculation")
collectLeavesWeightsFromDataset(model, data)
} else {
Array[Double]()
}
native_impl.CalcFeatureEffectAverageChangeWrapper(model, leavesWeightsFromDataset).toPrimitiveArray
}
def calcPredictionDiff(model: TFullModel, data: Pool) : Array[Double] = {
if (data == null) {
throw new CatBoostError("PredictionDiff feature importance requires dataset specified")
}
if (data.isQuantized) {
throw new CatBoostError("PredictionDiff feature importance does not support quantized datasets")
}
val threadCount = SparkHelpers.getThreadCountForDriver(data.data.sparkSession)
val localExecutor = new TLocalExecutor
localExecutor.Init(threadCount)
val (_, rawObjectsDataProvider) = DataHelpers.processDatasetWithRawFeatures(
data.data.select(data.getFeaturesCol).toLocalIterator.asScala,
featuresColumnIdx=0,
featuresLayout=data.getFeaturesLayout,
maxUniqCatFeatureValues=data.getCatFeaturesUniqValueCounts.max,
keepRawFeaturesInDstRows=false,
dstRowLength=0,
localExecutor=localExecutor
)
native_impl.GetPredictionDiffWrapper(model, rawObjectsDataProvider, localExecutor).toPrimitiveArray
}
/**
* Supported values of fstrType are FeatureImportance, PredictionValuesChange, LossFunctionChange, PredictionDiff
* @param data
* if fstrType is PredictionDiff it is required and must contain 2 samples
* if fstrType is PredictionValuesChange this param is required in case if model was explicitly trained
* with flag to store no leaf weights.
* otherwise it can be null
* @return array of feature importances (index corresponds to order of features in the model)
*/
def calc(
model: TFullModel,
fstrType: EFstrType,
data: Pool=null,
calcType: ECalcTypeShapValues=ECalcTypeShapValues.Regular
) : Array[Double] = {
val resolvedFstrType = if (fstrType == EFstrType.FeatureImportance) {
native_impl.GetDefaultFstrType(model)
} else {
fstrType
}
resolvedFstrType match {
case EFstrType.PredictionValuesChange => this.calcPredictionValuesChange(model, data)
case EFstrType.LossFunctionChange => this.calcLossFunctionChange(model, data, calcType)
case EFstrType.PredictionDiff => this.calcPredictionDiff(model, data)
case _ => throw new CatBoostError(s"getFeatureImportance: unexpected fstrType: ${fstrType}")
}
}
def calcShapValues(
model: TFullModel,
data: Pool,
preCalcMode: EPreCalcShapValues,
calcType: ECalcTypeShapValues,
modelOutputType: EExplainableModelOutput,
referenceData: Pool,
outputColumns: Array[String]
) : DataFrame = {
val dataForApplication = data.quantizeForModelApplicationImpl(model)
val threadCount = SparkHelpers.getThreadCountForDriver(data.data.sparkSession)
val localExecutor = new TLocalExecutor
localExecutor.Init(threadCount)
val preparedTrees = prepareTrees(
model,
dataForApplication,
preCalcMode,
calcInternalValues=false,
calcType=calcType,
calcShapValuesByLeaf=true,
localExecutor=localExecutor,
modelOutputType=modelOutputType,
referenceData=referenceData
)
val modelDimensionsCount = model.GetDimensionsCount().toInt
val dstSchema = StructType(
DataHelpers.selectSchemaFields(dataForApplication.data.schema, outputColumns)
:+ StructField(
"shapValues",
if (modelDimensionsCount > 1) {
linalg.SQLDataTypes.MatrixType
} else {
linalg.SQLDataTypes.VectorType
},
false
)
)
dataForApplication.mapQuantizedPartitions(
selectedColumns=Seq("features"),
includeEstimatedFeatures=false,
includePairsIfPresent=true,
dstColumnNames=outputColumns,
dstRowLength=dstSchema.length - 1,
(
dataProvider: TDataProviderPtr,
estimatedDataProvider: TDataProviderPtr,
dstRows: mutable.ArrayBuffer[Array[Any]],
localExecutor: TLocalExecutor
) => {
val result = native_impl.CalcShapValuesWithPreparedTreesWrapper(
model,
dataProvider,
preparedTrees,
calcType,
localExecutor
)
val objectCount = result.GetObjectCount
val shapValuesCount = result.GetShapValuesCount
(if (modelDimensionsCount > 1) {
(0 until objectCount).map(
objectIdx => {
val shapValues = new linalg.DenseMatrix(
modelDimensionsCount,
shapValuesCount,
result.Get(objectIdx).toPrimitiveArray,
isTransposed=true
)
Row.fromSeq(dstRows(objectIdx).toSeq :+ shapValues)
}
)
} else {
(0 until objectCount).map(
objectIdx => {
val shapValues = new linalg.DenseVector(result.Get(objectIdx).toPrimitiveArray)
Row.fromSeq(dstRows(objectIdx).toSeq :+ shapValues)
}
)
}).toIterator
}
)(RowEncoderConstructor.construct(dstSchema), classTag[Row])
}
def calcShapInteractionValues(
model: TFullModel,
data: Pool,
featureIndices: Pair[Int, Int], // can be null
featureNames: Pair[String, String], // can be null
preCalcMode: EPreCalcShapValues,
calcType: ECalcTypeShapValues,
outputColumns: Array[String]
) : DataFrame = {
val dataForApplication = data.quantizeForModelApplicationImpl(model)
val threadCount = SparkHelpers.getThreadCountForDriver(data.data.sparkSession)
val localExecutor = new TLocalExecutor
localExecutor.Init(threadCount)
val preparedTrees = prepareTrees(
model,
dataForApplication,
preCalcMode,
calcInternalValues=true,
calcType=calcType,
calcShapValuesByLeaf=false,
localExecutor=localExecutor
)
val modelDimensionsCount = model.GetDimensionsCount().toInt
var dstSchemaFields = DataHelpers.selectSchemaFields(dataForApplication.data.schema, outputColumns)
val outputColumnCount = dstSchemaFields.size
if (modelDimensionsCount > 1) {
dstSchemaFields = dstSchemaFields :+ StructField("classIdx", IntegerType, false)
}
dstSchemaFields = dstSchemaFields ++ Seq(
StructField("featureIdx1", IntegerType, false),
StructField("featureIdx2", IntegerType, false),
StructField("shapInteractionValue", DoubleType, false)
)
val selectedFeatureIndices = new Array[Int](2)
if (featureIndices != null) {
if (featureNames != null) {
throw new CatBoostError("only one of featureIndices of featureNames can be specified")
}
selectedFeatureIndices(0) = featureIndices.getLeft()
selectedFeatureIndices(1) = featureIndices.getRight()
} else if (featureNames != null) {
native_impl.GetSelectedFeaturesIndices(
model,
featureNames.getLeft(),
featureNames.getRight(),
selectedFeatureIndices
)
} else {
selectedFeatureIndices(0) = -1
selectedFeatureIndices(1) = -1
}
dataForApplication.mapQuantizedPartitions(
selectedColumns=Seq("features"),
includeEstimatedFeatures=false,
includePairsIfPresent=true,
dstColumnNames=outputColumns,
dstRowLength=outputColumnCount,
(
dataProvider: TDataProviderPtr,
estimatedDataProvider: TDataProviderPtr,
dstRows: mutable.ArrayBuffer[Array[Any]],
localExecutor: TLocalExecutor
) => {
val result = native_impl.CalcShapInteractionValuesWithPreparedTreesWrapper(
model,
dataProvider,
selectedFeatureIndices,
calcType,
localExecutor,
preparedTrees
)
val objectCount = result.GetObjectCount
val shapInteractionValuesCount = result.GetShapInteractionValuesCount
(if (modelDimensionsCount > 1) {
val dstRow = new Array[Any](outputColumnCount + 4)
(0 until objectCount).flatMap(
objectIdx => {
Array.copy(dstRows(objectIdx), 0, dstRow, 0, outputColumnCount)
(0 until modelDimensionsCount).flatMap(
dimension => {
dstRow(outputColumnCount) = dimension
val values = result.Get(objectIdx, dimension).toPrimitiveArray
(0 until shapInteractionValuesCount).flatMap(
idx1 => {
dstRow(outputColumnCount + 1) = idx1
(0 until shapInteractionValuesCount).map(
idx2 => {
dstRow(outputColumnCount + 2) = idx2
dstRow(outputColumnCount + 3) = values(idx1 * shapInteractionValuesCount + idx2)
Row.fromSeq(dstRow.toSeq)
}
)
}
)
}
)
}
)
} else {
val dstRow = new Array[Any](outputColumnCount + 3)
(0 until objectCount).flatMap(
objectIdx => {
Array.copy(dstRows(objectIdx), 0, dstRow, 0, outputColumnCount)
val values = result.Get(objectIdx).toPrimitiveArray
(0 until shapInteractionValuesCount).flatMap(
idx1 => {
dstRow(outputColumnCount) = idx1
(0 until shapInteractionValuesCount).map(
idx2 => {
dstRow(outputColumnCount + 1) = idx2
dstRow(outputColumnCount + 2) = values(idx1 * shapInteractionValuesCount + idx2)
Row.fromSeq(dstRow.toSeq)
}
)
}
)
}
)
}).toIterator
}
)(RowEncoderConstructor.construct(StructType(dstSchemaFields)), classTag[Row])
}
def calcInteraction(model: TFullModel) : Array[FeatureInteractionScore] = {
val firstIndicesVector = new TVector_i32
val secondIndicesVector = new TVector_i32
val scoresVector = new TVector_double
native_impl.CalcInteraction(model, firstIndicesVector, secondIndicesVector, scoresVector)
val firstIndices = firstIndicesVector.toPrimitiveArray
val secondIndices = secondIndicesVector.toPrimitiveArray
val scores = scoresVector.toPrimitiveArray
val resultSize = scores.length
val result = new Array[FeatureInteractionScore](resultSize)
for (i <- 0 until resultSize) {
result(i) = new FeatureInteractionScore(firstIndices(i), secondIndices(i), scores(i))
}
result
}
}