ai.catboost.spark.DataHelpers.scala Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of catboost-spark_3.5_2.13 Show documentation
Show all versions of catboost-spark_3.5_2.13 Show documentation
JVM module to use CatBoost on Apache Spark
The newest version!
package ai.catboost.spark;
import collection.mutable
import collection.mutable.HashMap
import collection.JavaConverters._
import java.nio.file.{Files,Path}
import java.util.Arrays
import org.slf4j.Logger
import org.apache.spark.ml.attribute._
import org.apache.spark.ml.linalg._
import org.apache.spark.ml.param._
import org.apache.spark.rdd.RDD
import org.apache.spark.sql._
import org.apache.spark.sql.catalyst.encoders.RowEncoder
import org.apache.spark.sql.functions.typedLit
import org.apache.spark.sql.types._
import org.apache.spark.storage.StorageLevel
import ai.catboost.CatBoostError
import ai.catboost.spark.impl.RowEncoderConstructor
import ru.yandex.catboost.spark.catboost4j_spark.core.src.native_impl._
private[spark] class QuantizedFeaturesIndices(
val ui8Indices : Array[Int],
val ui16Indices : Array[Int],
val ui32Indices : Array[Int]
) {
}
private[spark] object QuantizedFeaturesIndices {
def apply(
featuresLayout: TFeaturesLayoutPtr,
quantizedFeaturesInfo: QuantizedFeaturesInfoPtr
) : QuantizedFeaturesIndices = {
val ui8FeatureIndicesVec = new TVector_i32
val ui16FeatureIndicesVec = new TVector_i32
val ui32FeatureIndicesVec = new TVector_i32
native_impl.GetActiveFeaturesIndices(
featuresLayout,
quantizedFeaturesInfo,
ui8FeatureIndicesVec,
ui16FeatureIndicesVec,
ui32FeatureIndicesVec
)
new QuantizedFeaturesIndices(
ui8FeatureIndicesVec.toPrimitiveArray,
ui16FeatureIndicesVec.toPrimitiveArray,
ui32FeatureIndicesVec.toPrimitiveArray
)
}
}
// Offsets in source quantized features blob
private[spark] class SelectedFeaturesOffsets (
val ui8Offsets : Array[Int],
val ui16Offsets : Array[Int],
val ui32Offsets : Array[Int]
) extends java.io.Serializable {
def getByteSize: Int = {
return ui8Offsets.length * 1 + ui16Offsets.length * 2 + ui32Offsets.length * 4
}
}
private[spark] object SelectedFeaturesOffsets{
def apply(
quantizedFeaturesInfo: QuantizedFeaturesInfoPtr,
featuresIndices: QuantizedFeaturesIndices,
selectedFeaturesFlatIndices: Set[Int]
) : SelectedFeaturesOffsets = {
val offsetsUi8Builder = mutable.ArrayBuilder.make[Int]
val offsetsUi16Builder = mutable.ArrayBuilder.make[Int]
val offsetsUi32Builder = mutable.ArrayBuilder.make[Int]
var offset = 0
for (i <- featuresIndices.ui8Indices) {
if (selectedFeaturesFlatIndices.contains(i)) {
offsetsUi8Builder += offset
}
offset = offset + 1
}
for (i <- featuresIndices.ui16Indices) {
if (selectedFeaturesFlatIndices.contains(i)) {
offsetsUi16Builder += offset
}
offset = offset + 2
}
for (i <- featuresIndices.ui32Indices) {
if (selectedFeaturesFlatIndices.contains(i)) {
offsetsUi32Builder += offset
}
offset = offset + 4
}
new SelectedFeaturesOffsets(
offsetsUi8Builder.result,
offsetsUi16Builder.result,
offsetsUi32Builder.result
)
}
}
private[spark] object FeaturesColumnStorage {
def apply(
featuresLayout: TFeaturesLayoutPtr,
quantizedFeaturesInfo: QuantizedFeaturesInfoPtr
) : FeaturesColumnStorage = {
val featuresIndices = QuantizedFeaturesIndices(featuresLayout, quantizedFeaturesInfo)
val buffersUi8 = new Array[TVector_i64](featuresIndices.ui8Indices.length)
for (i <- 0 until featuresIndices.ui8Indices.length) {
buffersUi8(i) = new TVector_i64
}
val buffersUi16 = new Array[TVector_i64](featuresIndices.ui16Indices.length)
for (i <- 0 until featuresIndices.ui16Indices.length) {
buffersUi16(i) = new TVector_i64
}
val buffersUi32 = new Array[TVector_i64](featuresIndices.ui32Indices.length)
for (i <- 0 until featuresIndices.ui32Indices.length) {
buffersUi32(i) = new TVector_i64
}
new FeaturesColumnStorage(
quantizedFeaturesInfo.GetFeaturesLayout,
featuresIndices.ui8Indices,
featuresIndices.ui16Indices,
featuresIndices.ui32Indices,
buffersUi8,
buffersUi16,
buffersUi32,
new Array[java.nio.ByteBuffer](featuresIndices.ui8Indices.length),
new Array[java.nio.ByteBuffer](featuresIndices.ui16Indices.length),
new Array[java.nio.ByteBuffer](featuresIndices.ui32Indices.length)
)
}
def forEstimated(featuresLayout: TFeaturesLayoutPtr) : FeaturesColumnStorage = {
val featureCount = featuresLayout.GetExternalFeatureCount.toInt
val ui8Indices = (0 until featureCount).toArray
val buffersUi8 = new Array[TVector_i64](featureCount)
for (i <- 0 until featureCount) {
buffersUi8(i) = new TVector_i64
}
new FeaturesColumnStorage(
featuresLayout,
ui8Indices,
new Array[Int](0),
new Array[Int](0),
buffersUi8,
null,
null,
new Array[java.nio.ByteBuffer](featureCount),
null,
null
)
}
}
/**
* store quantized feature columns in C++'s TVectors to be zero-copy passed to TQuantizedDataProvider
* expose their memory via JVM's java.nio.ByteBuffer.
* size grows dynamically by adding rows' features data
*/
private[spark] class FeaturesColumnStorage (
val featuresLayoutPtr: TFeaturesLayoutPtr,
val indicesUi8: Array[Int],
val indicesUi16: Array[Int],
val indicesUi32: Array[Int],
val buffersUi8: Array[TVector_i64],
val buffersUi16: Array[TVector_i64],
val buffersUi32: Array[TVector_i64],
var javaBuffersUi8: Array[java.nio.ByteBuffer],
var javaBuffersUi16: Array[java.nio.ByteBuffer],
var javaBuffersUi32: Array[java.nio.ByteBuffer],
var pos: Int = 0,
var bufferSize: Int = 0
) {
def addRowFeatures(quantizedValues: Array[Byte]) = {
if (pos == bufferSize) {
realloc(if (bufferSize == 0) { 16000 } else { bufferSize * 2 })
}
val byteBuffer = java.nio.ByteBuffer.wrap(quantizedValues)
byteBuffer.order(java.nio.ByteOrder.nativeOrder)
for (i <- 0 until indicesUi8.length) {
javaBuffersUi8(i).put(pos, byteBuffer.get)
}
for (i <- 0 until indicesUi16.length) {
javaBuffersUi16(i).putShort(2 * pos, byteBuffer.getShort)
}
for (i <- 0 until indicesUi32.length) {
javaBuffersUi32(i).putInt(4 * pos, byteBuffer.getInt)
}
pos = pos + 1
}
private def ceilDiv(x: Int, y: Int) : Int = (x + y - 1) / y
private def realloc(newSize: Int) = {
val sizeForUi8 = ceilDiv(newSize, 8)
val sizeForUi16 = ceilDiv(newSize, 4)
val sizeForUi32 = ceilDiv(newSize, 2)
for (i <- 0 until indicesUi8.length) {
buffersUi8(i).yresize(sizeForUi8)
javaBuffersUi8(i) = buffersUi8(i).asDirectByteBuffer
javaBuffersUi8(i).order(java.nio.ByteOrder.nativeOrder)
}
for (i <- 0 until indicesUi16.length) {
buffersUi16(i).yresize(sizeForUi16)
javaBuffersUi16(i) = buffersUi16(i).asDirectByteBuffer
javaBuffersUi16(i).order(java.nio.ByteOrder.nativeOrder)
}
for (i <- 0 until indicesUi32.length) {
buffersUi32(i).yresize(sizeForUi32)
javaBuffersUi32(i) = buffersUi32(i).asDirectByteBuffer
javaBuffersUi32(i).order(java.nio.ByteOrder.nativeOrder)
}
bufferSize = newSize
}
def addToVisitor(visitor: IQuantizedFeaturesDataVisitor) = {
val featuresLayout = featuresLayoutPtr.Get
for (i <- 0 until indicesUi8.length) {
visitor.AddFeature(featuresLayout, indicesUi8(i), pos, 8, buffersUi8(i))
}
for (i <- 0 until indicesUi16.length) {
visitor.AddFeature(featuresLayout, indicesUi16(i), pos, 16, buffersUi16(i))
}
for (i <- 0 until indicesUi32.length) {
visitor.AddFeature(featuresLayout, indicesUi32(i), pos, 32, buffersUi32(i))
}
}
}
private[spark] class ProcessRowsOutputIterator(
val dstRows : mutable.ArrayBuffer[Array[Any]],
val processRowCallback: (Array[Any], Int) => Array[Any], // add necessary data to row
var objectIdx : Int = 0
) extends Iterator[Row] {
def next() : Row = {
val dstRow = processRowCallback(dstRows(objectIdx), objectIdx)
dstRows(objectIdx) = null // to speed up cleanup
objectIdx = objectIdx + 1
return Row.fromSeq(dstRow)
}
def hasNext : Boolean = {
return objectIdx < dstRows.size
}
}
private[spark] class PoolFilesPaths(
val mainData : Path,
val pairsData : Option[Path],
val estimatedCtrData : Option[Path]
) {}
private[spark] class EstimatedFeaturesLoadingContext(
var dataProviderBuilderClosure : TDataProviderClosureForJVM = null,
var visitor : IQuantizedFeaturesDataVisitor = null,
var dataMetaInfo : TIntermediateDataMetaInfo = null,
var quantizedFeaturesInfo : QuantizedFeaturesInfoPtr = null
) {
def start(objectCount: Int) = {
dataMetaInfo.setObjectCount(java.math.BigInteger.valueOf(objectCount))
visitor.Start(dataMetaInfo, objectCount, quantizedFeaturesInfo.__deref__)
}
def finish() = {
visitor.Finish
}
def getResult() : TDataProviderPtr = {
dataProviderBuilderClosure.GetResult()
}
}
private[spark] object EstimatedFeaturesLoadingContext {
def createAndUpdateCallbacks(
estimatedFeatureCount: Int,
estimatedFeaturesColumnIdxInSchema: Int,
localExecutor: TLocalExecutor,
mainDataRowCallbacks: mutable.ArrayBuffer[Row => Unit],
postprocessingCallbacks: mutable.ArrayBuffer[() => Unit]
) : EstimatedFeaturesLoadingContext = {
val (dataProviderBuilder, visitor) = DataHelpers.getDataProviderBuilderAndVisitor(
/*hasFeatures*/ true,
localExecutor
)
val result = new EstimatedFeaturesLoadingContext(dataProviderBuilder, visitor)
result.quantizedFeaturesInfo = native_impl.MakeEstimatedQuantizedFeaturesInfo(
estimatedFeatureCount
)
result.dataMetaInfo = new TIntermediateDataMetaInfo
result.dataMetaInfo.setFeaturesLayout(result.quantizedFeaturesInfo.GetFeaturesLayout)
val featuresColumnStorage = FeaturesColumnStorage.forEstimated(
result.quantizedFeaturesInfo.GetFeaturesLayout
)
mainDataRowCallbacks += {
row => {
featuresColumnStorage.addRowFeatures(row.getAs[Array[Byte]](estimatedFeaturesColumnIdxInSchema))
}
}
postprocessingCallbacks += {
() => featuresColumnStorage.addToVisitor(result.visitor)
}
result
}
}
private[spark] class DatasetLoadingContext(
val dataProviderBuilderClosure : TDataProviderClosureForJVM,
val visitor : IQuantizedFeaturesDataVisitor,
val dataMetaInfo : TIntermediateDataMetaInfo,
val quantizedFeaturesInfo : QuantizedFeaturesInfoPtr,
val mainDataRowCallbacks : mutable.ArrayBuffer[Row => Unit],
val mainDataPostprocessingCallbacks : mutable.ArrayBuffer[() => Unit],
val pairsDataRowCallback : (Int, HashMap[Long,Int], Row) => Unit,
val pairsDataPostprocessingCallback : () => Unit,
val dstRows : mutable.ArrayBuffer[Array[Any]],
val estimatedFeaturesLoadingContext : EstimatedFeaturesLoadingContext
) {
// call after processing all rows
def postprocessAndGetResults(objectCount: Int) : (TDataProviderPtr, TDataProviderPtr, mutable.ArrayBuffer[Array[Any]]) = {
dataMetaInfo.setObjectCount(java.math.BigInteger.valueOf(objectCount))
visitor.Start(dataMetaInfo, objectCount, quantizedFeaturesInfo.__deref__)
if (estimatedFeaturesLoadingContext != null) {
estimatedFeaturesLoadingContext.start(objectCount)
}
mainDataPostprocessingCallbacks.foreach(_())
if (pairsDataPostprocessingCallback != null) {
pairsDataPostprocessingCallback()
}
visitor.Finish
if (estimatedFeaturesLoadingContext != null) {
estimatedFeaturesLoadingContext.finish()
(dataProviderBuilderClosure.GetResult(), estimatedFeaturesLoadingContext.getResult(), dstRows)
} else {
(dataProviderBuilderClosure.GetResult(), null, dstRows)
}
}
}
private[spark] object DatasetLoadingContext {
def apply(
quantizedFeaturesInfo: QuantizedFeaturesInfoPtr,
columnIndexMap: HashMap[String, Int], // column type -> idx in schema
dataMetaInfo: TIntermediateDataMetaInfo,
mainDatasetSchema: StructType,
pairsDatasetSchema: StructType, // can be null
estimatedFeatureCount: Option[Int],
localExecutor: TLocalExecutor,
dstRowsColumnIndices: Array[Int] = null,
dstRowLength: Int = 0
) : DatasetLoadingContext = {
val ownedDataMetaInfo = dataMetaInfo.Clone()
val (dataProviderBuilderClosure, visitor) = DataHelpers.getDataProviderBuilderAndVisitor(
columnIndexMap.contains("features"),
localExecutor
);
val (mainDataRowCallbacks, mainDataPostprocessingCallbacks) = getMainDataProcessingCallbacks(
quantizedFeaturesInfo,
columnIndexMap,
ownedDataMetaInfo,
visitor,
mainDatasetSchema
)
val (pairsDataRowCallback, pairsDataPostprocessingCallback) = if (pairsDatasetSchema != null) {
getPairsDataProcessingCallbacks(
visitor,
pairsDatasetSchema
)
} else {
(null, null)
}
val dstRows = addDstRowsCallback(mainDataRowCallbacks, dstRowsColumnIndices, dstRowLength)
val estimatedFeaturesLoadingContext =
if (estimatedFeatureCount.isDefined) {
EstimatedFeaturesLoadingContext.createAndUpdateCallbacks(
estimatedFeatureCount.get,
columnIndexMap("_estimatedFeatures"),
localExecutor,
mainDataRowCallbacks,
mainDataPostprocessingCallbacks
)
} else {
null
}
new DatasetLoadingContext(
dataProviderBuilderClosure,
visitor,
ownedDataMetaInfo,
quantizedFeaturesInfo,
mainDataRowCallbacks,
mainDataPostprocessingCallbacks,
pairsDataRowCallback,
pairsDataPostprocessingCallback,
dstRows,
estimatedFeaturesLoadingContext
)
}
private def getLabelCallback(
stringLabelData: TVector_TString,
floatLabelData: mutable.ArrayBuilder.ofFloat,
fieldIdx: Int,
schema: StructType
) : (Row => Unit) = {
schema(fieldIdx).dataType match {
case DataTypes.IntegerType => {
row => {
floatLabelData += row.getAs[Int](fieldIdx).toFloat
}
}
case DataTypes.LongType => {
row => {
floatLabelData += row.getAs[Long](fieldIdx).toFloat
}
}
case DataTypes.FloatType => {
row => {
floatLabelData += row.getAs[Float](fieldIdx)
}
}
case DataTypes.DoubleType => {
row => {
floatLabelData += row.getAs[Double](fieldIdx).toFloat
}
}
case DataTypes.StringType => {
row => {
stringLabelData.add(row.getAs[String](fieldIdx))
}
}
case DataTypes.BooleanType => {
row => {
floatLabelData += (if (row.getAs[Boolean](fieldIdx)) 1.0f else 0.0f)
}
}
case _ => throw new CatBoostError("Unsupported data type for Label")
}
}
private def getFloatCallback(
floatData: mutable.ArrayBuilder.ofFloat,
fieldIdx: Int,
schema: StructType
) : (Row => Unit) = {
schema(fieldIdx).dataType match {
case DataTypes.FloatType => {
row => {
floatData += row.getAs[Float](fieldIdx)
}
}
case DataTypes.DoubleType => {
row => {
floatData += row.getAs[Double](fieldIdx).toFloat
}
}
case _ => throw new CatBoostError("Unsupported data type for float column")
}
}
/**
* @returns (row callbacks, postprocessing callbacks)
*/
private def getMainDataProcessingCallbacks(
quantizedFeaturesInfo: QuantizedFeaturesInfoPtr,
columnIndexMap: HashMap[String, Int], // column type -> idx in schema
dataMetaInfo: TIntermediateDataMetaInfo,
visitor: IQuantizedFeaturesDataVisitor,
schema: StructType
) : (mutable.ArrayBuffer[Row => Unit], mutable.ArrayBuffer[() => Unit]) = {
val callbacks = new mutable.ArrayBuffer[Row => Unit]
val postprocessingCallbacks = new mutable.ArrayBuffer[() => Unit]
if (columnIndexMap.contains("features")) {
val fieldIdx = columnIndexMap("features")
val featuresColumnStorage = FeaturesColumnStorage(dataMetaInfo.getFeaturesLayout, quantizedFeaturesInfo)
callbacks += {
row => {
featuresColumnStorage.addRowFeatures(row.getAs[Array[Byte]](fieldIdx))
}
}
postprocessingCallbacks += {
() => featuresColumnStorage.addToVisitor(visitor)
}
}
if (columnIndexMap.contains("label")) {
val fieldIdx = columnIndexMap("label")
val stringLabelData = new TVector_TString
val floatLabelData = new mutable.ArrayBuilder.ofFloat
callbacks += getLabelCallback(
stringLabelData,
floatLabelData,
fieldIdx,
schema
)
postprocessingCallbacks += {
() => dataMetaInfo.getTargetType match {
case ERawTargetType.Float | ERawTargetType.Integer | ERawTargetType.Boolean =>
visitor.AddTarget(floatLabelData.result)
case ERawTargetType.String => visitor.AddTarget(stringLabelData)
case _ =>
}
}
}
if (columnIndexMap.contains("weight")) {
val fieldIdx = columnIndexMap("weight")
val weightData = new mutable.ArrayBuilder.ofFloat
callbacks += getFloatCallback(weightData, fieldIdx, schema)
postprocessingCallbacks += {
() => visitor.AddWeight(weightData.result)
}
}
if (columnIndexMap.contains("groupWeight")) {
val fieldIdx = columnIndexMap("groupWeight")
val groupWeightData = new mutable.ArrayBuilder.ofFloat
callbacks += getFloatCallback(groupWeightData, fieldIdx, schema)
postprocessingCallbacks += {
() => visitor.AddGroupWeight(groupWeightData.result)
}
}
if (columnIndexMap.contains("baseline")) {
val fieldIdx = columnIndexMap("baseline")
val baselineCount = dataMetaInfo.getBaselineCount.toInt
val baselineData = new Array[mutable.ArrayBuilder.ofFloat](baselineCount)
callbacks += {
row => {
val baselineRow = row.getAs[Vector](fieldIdx).toDense
for (i <- 0 until baselineCount) {
baselineData(i) += baselineRow(i).toFloat
}
}
}
postprocessingCallbacks += {
() => {
for (i <- 0 until baselineCount) {
visitor.AddBaseline(i, baselineData(i).result)
}
}
}
}
if (columnIndexMap.contains("groupId")) {
val fieldIdx = columnIndexMap("groupId")
val groupIdData = new mutable.ArrayBuilder.ofLong
callbacks += {
row => {
groupIdData += row.getAs[Long](fieldIdx)
}
}
postprocessingCallbacks += {
() => visitor.AddGroupId(groupIdData.result)
}
}
if (columnIndexMap.contains("subgroupId")) {
val fieldIdx = columnIndexMap("subgroupId")
val subgroupIdData = new mutable.ArrayBuilder.ofInt
callbacks += {
row => {
subgroupIdData += row.getAs[Int](fieldIdx)
}
}
postprocessingCallbacks += {
() => visitor.AddSubgroupId(subgroupIdData.result)
}
}
if (columnIndexMap.contains("timestamp")) {
val fieldIdx = columnIndexMap("timestamp")
val timestampData = new mutable.ArrayBuilder.ofLong
callbacks += {
row => {
timestampData += row.getAs[Long](fieldIdx)
}
}
postprocessingCallbacks += {
() => visitor.AddTimestamp(timestampData.result)
}
}
(callbacks, postprocessingCallbacks)
}
/**
* @return (row callback, postprocessing callback)
* row callback has (groupIdx: Int, sampleIdToIdxInGroup: HashMap[Long,Int], row: Row) arguments.
*/
private def getPairsDataProcessingCallbacks(
visitor: IQuantizedFeaturesDataVisitor,
schema: StructType
) : ((Int, HashMap[Long,Int], Row) => Unit, () => Unit) = {
val pairsDataBuilder = new TPairsDataBuilder
val winnerIdIdx = schema.fieldIndex("winnerId")
val loserIdIdx = schema.fieldIndex("loserId")
var maybeWeightIdx : Option[Int] = None
for ((structField, idx) <- schema.zipWithIndex) {
structField.name match {
case "weight" => { maybeWeightIdx = Some(idx) }
case _ => {}
}
}
val rowCallback = maybeWeightIdx match {
case Some(weightIdx) => {
(groupIdx: Int, sampleIdToIdxInGroup: HashMap[Long,Int], row: Row) => {
pairsDataBuilder.Add(
groupIdx,
sampleIdToIdxInGroup(row.getAs[Long](winnerIdIdx)),
sampleIdToIdxInGroup(row.getAs[Long](loserIdIdx)),
row.getAs[Float](weightIdx)
)
}
}
case None => {
(groupIdx: Int, sampleIdToIdxInGroup: HashMap[Long,Int], row: Row) => {
pairsDataBuilder.Add(
groupIdx,
sampleIdToIdxInGroup(row.getAs[Long](winnerIdIdx)),
sampleIdToIdxInGroup(row.getAs[Long](loserIdIdx))
)
}
}
}
(rowCallback, () => { pairsDataBuilder.AddToResult(visitor) })
}
/**
* return src rows with selected dstRowsColumnIndices, null if dstRowsColumnIndices is null
*/
private def addDstRowsCallback(
mainDataProcessingCallbacks : mutable.ArrayBuffer[Row => Unit],
dstRowsColumnIndices: Array[Int], // can be null
dstRowLength: Int
) : mutable.ArrayBuffer[Array[Any]] = {
if (dstRowLength > 0) {
val dstRows = new mutable.ArrayBuffer[Array[Any]]
if (dstRowsColumnIndices != null) {
mainDataProcessingCallbacks += {
row => {
val rowFields = new Array[Any](dstRowLength)
for (i <- 0 until dstRowsColumnIndices.size) {
rowFields(i) = row(dstRowsColumnIndices(i))
}
dstRows += rowFields
}
}
} else {
mainDataProcessingCallbacks += {
row => { dstRows += new Array[Any](dstRowLength) }
}
}
dstRows
} else {
null
}
}
}
private[spark] abstract class DatasetForTraining(
val srcPool : Pool,
val mainDataSchema : StructType,
val datasetIdx : Byte
)
private[spark] case class UsualDatasetForTraining(
override val srcPool : Pool,
val data : DataFrame,
override val datasetIdx : Byte
) extends DatasetForTraining(srcPool, data.schema, datasetIdx)
private[spark] case class DatasetForTrainingWithPairs(
override val srcPool : Pool,
val data : RDD[DataHelpers.PreparedGroupData],
override val mainDataSchema : StructType,
override val datasetIdx : Byte
) extends DatasetForTraining(srcPool, mainDataSchema, datasetIdx)
private[spark] object DataHelpers {
def selectSchemaFields(srcSchema: StructType, fieldNames: Array[String] = null) : Seq[StructField] = {
if (fieldNames == null) {
srcSchema.toSeq
} else {
srcSchema.filter(field => fieldNames.contains(field.name))
}
}
def mapSampleIdxToPerGroupSampleIdx(data: DataFrame) : DataFrame = {
val groupIdIdx = data.schema.fieldIndex("groupId")
val sampleIdIdx = data.schema.fieldIndex("sampleId")
// Cannot use DataFrame API directly with RowEncoder because it loses schema columns metadata
val resultAsRDD = data.rdd.groupBy(row => row.getLong(groupIdIdx)).flatMap{
case (groupId, rows) => {
var startSampleId : Long = Long.MaxValue
val rowsCopy = rows.map(
row => {
startSampleId = startSampleId.min(row.getLong(sampleIdIdx))
row
}
).toSeq
rowsCopy.map(
row => {
var fields = row.toSeq.toArray
fields(sampleIdIdx) = fields(sampleIdIdx).asInstanceOf[Long] - startSampleId
Row.fromSeq(fields)
}
)
}
}
data.sparkSession.createDataFrame(resultAsRDD, data.schema)
}
// first element is (datasetIdx, groupId) pair
// second element is (Iterable of main dataset data, Iterable of pairs data)
type PreparedGroupData = ((Byte, Long), (Iterable[Iterable[Row]], Iterable[Iterable[Row]]))
type GroupsIterator = Iterator[PreparedGroupData]
def makeFeaturesMetadata(initialFeatureNames: Array[String]) : Metadata = {
val featureNames = new Array[String](initialFeatureNames.length)
val featureNamesSet = new mutable.HashSet[String]()
for (i <- 0 until featureNames.size) {
val name = initialFeatureNames(i)
if (name.isEmpty) {
val generatedName = i.toString
if (featureNamesSet.contains(generatedName)) {
throw new CatBoostError(
s"""Unable to use generated name "$generatedName" for feature with unspecified name because"""
+ " it has been already used for another feature"
)
}
featureNames(i) = generatedName
} else {
featureNames(i) = name
}
featureNamesSet.add(featureNames(i))
}
val defaultAttr = NumericAttribute.defaultAttr
val attrs = featureNames.map {
name => defaultAttr.withName(name).asInstanceOf[Attribute]
}.toArray
val attrGroup = new AttributeGroup("userFeatures", attrs)
attrGroup.toMetadata
}
def getDistinctIntLabelValues(data: DataFrame, labelColumn: String) : Array[Int] = {
val iterator = data.select(labelColumn).distinct.toLocalIterator.asScala
data.schema(labelColumn).dataType match {
case DataTypes.IntegerType => iterator.map{ _.getAs[Int](0) }.toSeq.sorted.toArray
case DataTypes.LongType => iterator.map{ _.getAs[Long](0) }.toSeq.sorted.map{ _.toInt }.toArray
case _ => throw new CatBoostError("Unsupported data type for Integer Label")
}
}
def getDistinctFloatLabelValues(data: DataFrame, labelColumn: String) : Array[Float] = {
val iterator = data.select(labelColumn).distinct.toLocalIterator.asScala
data.schema(labelColumn).dataType match {
case DataTypes.FloatType => iterator.map{ _.getAs[Float](0) }.toSeq.sorted.toArray
case DataTypes.DoubleType => iterator.map{ _.getAs[Double](0) }.toSeq.sorted.map{ _.toFloat }.toArray
case _ => throw new CatBoostError("Unsupported data type for Float Label")
}
}
def getDistinctStringLabelValues(data: DataFrame, labelColumn: String) : TVector_TString = {
val iterator = data.select(labelColumn).distinct.toLocalIterator.asScala
data.schema(labelColumn).dataType match {
case DataTypes.StringType => new TVector_TString(
iterator.map{ _.getString(0) }.toSeq.sorted.toIterable.asJava
)
case _ => throw new CatBoostError("Unsupported data type for String Label")
}
}
// returns Array[Byte] because it is easier to pass to native code
def calcFeaturesHasNans(data: DataFrame, featuresColumn: String, featureCount: Int) : Array[Byte] = {
val featuresColIdx = data.schema.fieldIndex(featuresColumn)
import data.sparkSession.implicits._
val partialResultDf = data.mapPartitions(
rows => {
var result = new Array[Byte](featureCount)
Arrays.fill(result, 0.toByte)
for (row <- rows) {
val featureValues = row.getAs[Vector](featuresColIdx).toArray
for (i <- 0 until featureCount) {
if (featureValues(i) != featureValues(i)) { // inequality check is fast IsNan
result(i) = 1.toByte
}
}
}
Iterator[Array[Byte]](result)
}
).persist(StorageLevel.MEMORY_ONLY)
var result = new Array[Byte](featureCount)
Arrays.fill(result, 0.toByte)
for (partialResult <- partialResultDf.toLocalIterator.asScala) {
for (i <- 0 until featureCount) {
if (partialResult(i) == 1.toByte) {
result(i) = 1.toByte
}
}
}
partialResultDf.unpersist()
result
}
/**
* @return (dstRows, rawObjectDataProvider)
*/
def processDatasetWithRawFeatures(
rows: Iterator[Row],
featuresColumnIdx: Int,
featuresLayout: TFeaturesLayoutPtr,
maxUniqCatFeatureValues: Int,
keepRawFeaturesInDstRows: Boolean,
dstRowLength: Int,
localExecutor: TLocalExecutor
) : (mutable.ArrayBuffer[Array[Any]], TRawObjectsDataProviderPtr) = {
val dstRows = new mutable.ArrayBuffer[Array[Any]]
val availableFloatFeaturesFlatIndices
= native_impl.GetAvailableFeaturesFlatIndices_Float(featuresLayout.__deref__()).toPrimitiveArray
val availableCatFeaturesFlatIndices
= native_impl.GetAvailableFeaturesFlatIndices_Categorical(featuresLayout.__deref__()).toPrimitiveArray
// features data as columns
var availableFloatFeaturesData = new Array[mutable.ArrayBuilder[Float]](availableFloatFeaturesFlatIndices.size)
for (i <- 0 until availableFloatFeaturesData.size) {
availableFloatFeaturesData(i) = mutable.ArrayBuilder.make[Float]
}
var availableCatFeaturesData = new Array[mutable.ArrayBuilder[Int]](availableCatFeaturesFlatIndices.size)
for (i <- 0 until availableCatFeaturesData.size) {
availableCatFeaturesData(i) = mutable.ArrayBuilder.make[Int]
}
rows.foreach {
row => {
val rowFields = new Array[Any](dstRowLength)
for (i <- 0 until row.length) {
if (i == featuresColumnIdx) {
val featuresValues = row.getAs[Vector](i)
for (j <- 0 until availableFloatFeaturesFlatIndices.size) {
availableFloatFeaturesData(j) += featuresValues(availableFloatFeaturesFlatIndices(j)).toFloat
}
for (j <- 0 until availableCatFeaturesFlatIndices.size) {
availableCatFeaturesData(j) += featuresValues(availableCatFeaturesFlatIndices(j)).toInt
}
if (keepRawFeaturesInDstRows) {
rowFields(i) = row(i)
}
} else {
rowFields(i) = row(i)
}
}
dstRows += rowFields
}
}
val availableFloatFeaturesDataForBuilder = new TVector_TMaybeOwningConstArrayHolder_float
for (featureData <- availableFloatFeaturesData) {
val result = featureData.result
availableFloatFeaturesDataForBuilder.add(result)
}
val availableCatFeaturesDataForBuilder = new TVector_TMaybeOwningConstArrayHolder_i32
for (featureData <- availableCatFeaturesData) {
val result = featureData.result
availableCatFeaturesDataForBuilder.add(result)
}
val rawObjectsDataProviderPtr = native_impl.CreateRawObjectsDataProvider(
featuresLayout,
dstRows.size.toLong,
availableFloatFeaturesDataForBuilder,
availableCatFeaturesDataForBuilder,
maxUniqCatFeatureValues,
localExecutor
)
// try to force cleanup of no longer used data
availableFloatFeaturesData = null
availableCatFeaturesData = null
System.gc()
(dstRows, rawObjectsDataProviderPtr)
}
// Note: do not repartition the resulting data for master and workers separately
def prepareDatasetForTraining(pool: Pool, datasetIdx: Byte, workerCount: Int) : DatasetForTraining = {
if (pool.pairsData != null) {
val cogroupedData = getCogroupedMainAndPairsRDD(
pool.data,
pool.data.schema.fieldIndex(pool.getOrDefault(pool.groupIdCol)),
pool.pairsData,
datasetIdx,
numPartitions=Some(workerCount)
).cache()
DatasetForTrainingWithPairs(pool, cogroupedData, pool.data.schema, datasetIdx)
} else {
val repartitionedPool = pool.repartition(workerCount, byGroupColumnsIfPresent=true)
val data = repartitionedPool.data.withColumn("_datasetIdx", typedLit(datasetIdx)).cache()
UsualDatasetForTraining(pool, data, datasetIdx)
}
}
def getDataProviderBuilderAndVisitor(
hasFeatures: Boolean,
localExecutor: TLocalExecutor
) : (TDataProviderClosureForJVM, IQuantizedFeaturesDataVisitor) = {
val dataProviderBuilderOptions = new TDataProviderBuilderOptions
val dataProviderClosure = new TDataProviderClosureForJVM(
EDatasetVisitorType.QuantizedFeatures,
dataProviderBuilderOptions,
hasFeatures,
localExecutor
)
val visitor = dataProviderClosure.GetQuantizedVisitor
if (visitor == null) {
throw new CatBoostError("Failure to create IQuantizedFeaturesDataVisitor")
}
(dataProviderClosure, visitor)
}
def getLoadedDatasets(
datasetLoadingContexts: Seq[DatasetLoadingContext],
objectCountPerDataset : Array[Int]
) : (TVector_TDataProviderPtr, TVector_TDataProviderPtr, Array[mutable.ArrayBuffer[Array[Any]]]) = {
val dstDataProviders = new TVector_TDataProviderPtr
val dstEstimatedDataProviders = new TVector_TDataProviderPtr
val dstDatasetsRows = new Array[mutable.ArrayBuffer[Array[Any]]](datasetLoadingContexts.size)
datasetLoadingContexts.zipWithIndex.map {
case (datasetLoadingContext, i) => {
val (dataProvider, estimatedDataProvider, dstRows)
= datasetLoadingContext.postprocessAndGetResults(objectCountPerDataset(i))
dstDataProviders.add(dataProvider)
if (estimatedDataProvider != null) {
dstEstimatedDataProviders.add(estimatedDataProvider)
}
dstDatasetsRows(i) = dstRows
}
}
(dstDataProviders, dstEstimatedDataProviders, dstDatasetsRows)
}
/**
* Create quantized data providers from iterating over DataFrame's Rows.
* @returns (quantized data provider, quantized estimated features provider, dstRows).
* types of quantized data providers are TDataProviderPtr because that's generic interface that
* clients (like training, prediction, feature quality estimators) accept.
* Quantized estimated features provider is created if estimatedFeatureCount is defined
* dstRows - src rows with selected dstRowsColumnIndices, null if dstRowsColumnIndices is null
*/
def loadQuantizedDatasets(
datasetCount: Int,
quantizedFeaturesInfo: QuantizedFeaturesInfoPtr,
columnIndexMap: HashMap[String, Int], // column type -> idx in schema
dataMetaInfo: TIntermediateDataMetaInfo,
schema: StructType,
estimatedFeatureCount: Option[Int],
localExecutor: TLocalExecutor,
rows: Iterator[Row],
dstRowsColumnIndices: Array[Int] = null,
dstRowLength: Int = 0
) : (TVector_TDataProviderPtr, TVector_TDataProviderPtr, Array[mutable.ArrayBuffer[Array[Any]]]) = {
val datasetLoadingContexts = (0 until datasetCount).map{
_ => DatasetLoadingContext(
quantizedFeaturesInfo,
columnIndexMap,
dataMetaInfo,
schema,
/*pairsDatasetSchema*/ null,
estimatedFeatureCount,
localExecutor,
dstRowsColumnIndices,
dstRowLength
)
}
var objectCountPerDataset = new Array[Int](datasetCount)
Arrays.fill(objectCountPerDataset, 0)
val datasetIdxColumnIdx = columnIndexMap.getOrElse("_datasetIdx", -1)
rows.foreach {
row => {
val datasetIdx = if (datasetIdxColumnIdx == -1) { 0 } else { row.getAs[Byte](datasetIdxColumnIdx).toInt }
datasetLoadingContexts(datasetIdx).mainDataRowCallbacks.foreach(_(row))
objectCountPerDataset(datasetIdx) = objectCountPerDataset(datasetIdx) + 1
}
}
getLoadedDatasets(datasetLoadingContexts, objectCountPerDataset)
}
/**
* Create quantized data providers from iterating over cogrouped merged main dataset and pairs data.
* @returns (quantized data providers, quantized estimated features providers, dstRows).
* types of quantized data providers are TDataProviderPtr because that's generic interface that
* clients (like training, prediction, feature quality estimators) accept.
* Quantized estimated features provider is created if estimatedFeatureCount is defined
* dstRows - src rows with selected dstRowsColumnIndices, null if dstRowsColumnIndices is null
*/
def loadQuantizedDatasetsWithPairs(
datasetOffset: Int,
datasetCount: Int,
quantizedFeaturesInfo: QuantizedFeaturesInfoPtr,
columnIndexMap: HashMap[String, Int], // column type -> idx in schema
dataMetaInfo: TIntermediateDataMetaInfo,
datasetSchema: StructType,
pairsDatasetSchema: StructType,
estimatedFeatureCount: Option[Int],
localExecutor: TLocalExecutor,
groupsIterator: GroupsIterator,
dstRowsColumnIndices: Array[Int] = null,
dstRowLength: Int = 0
) : (TVector_TDataProviderPtr, TVector_TDataProviderPtr, Array[mutable.ArrayBuffer[Array[Any]]]) = {
val datasetLoadingContexts = (0 until datasetCount).map{
_ => DatasetLoadingContext(
quantizedFeaturesInfo,
columnIndexMap,
dataMetaInfo,
datasetSchema,
pairsDatasetSchema,
estimatedFeatureCount,
localExecutor,
dstRowsColumnIndices,
dstRowLength
)
}
var objectCountPerDataset = new Array[Int](datasetCount)
Arrays.fill(objectCountPerDataset, 0)
var groupIdxPerDataset = new Array[Int](datasetCount)
Arrays.fill(groupIdxPerDataset, 0)
val sampleIdIdx = columnIndexMap("sampleId")
groupsIterator.foreach(
(group: PreparedGroupData) => {
val datasetIdx = group._1._1.toInt - datasetOffset
val groupIdx = groupIdxPerDataset(datasetIdx)
val sampleIdToIdxInGroup = new HashMap[Long,Int]
var objectIdxInGroup = 0
group._2._1.foreach(
(it : Iterable[Row]) => {
it.foreach(
row => {
datasetLoadingContexts(datasetIdx).mainDataRowCallbacks.foreach(_(row))
val sampleId = row.getLong(sampleIdIdx)
sampleIdToIdxInGroup.put(sampleId, objectIdxInGroup)
objectIdxInGroup = objectIdxInGroup + 1
}
)
}
)
objectCountPerDataset(datasetIdx) = objectCountPerDataset(datasetIdx) + objectIdxInGroup
group._2._2.foreach(
(it : Iterable[Row]) => {
it.foreach(
row => {
datasetLoadingContexts(datasetIdx).pairsDataRowCallback(groupIdx, sampleIdToIdxInGroup, row)
}
)
}
)
groupIdxPerDataset(datasetIdx) = groupIdx + 1
}
)
getLoadedDatasets(datasetLoadingContexts, objectCountPerDataset)
}
/**
* @returns (
* map of column type -> index in dst main data columns,
* selected column names,
* dst column indices,
* estimatedFeatureCount
* )
*/
def selectColumnsAndReturnIndex(
pool: Pool,
columnTypeNames: Seq[String],
includeEstimatedFeatures: Boolean,
includeDatasetIdx: Boolean = false,
dstColumnNames: Seq[String] = Seq()
) : (HashMap[String, Int], Array[String], Array[Int], Option[Int]) = {
val columnTypesMap = new mutable.HashMap[String, Int]()
var columnsList = new mutable.ArrayBuffer[String]()
var i = 0
val updateColumnWithType = (columnName : String, columnTypeName : String) => {
columnsList += columnName
columnTypesMap.update(columnTypeName, i)
i = i + 1
}
for (columnTypeName <- columnTypeNames) {
val param = pool.getParam(columnTypeName + "Col").asInstanceOf[Param[String]]
if (pool.isDefined(param)) {
updateColumnWithType(pool.getOrDefault(param), columnTypeName)
}
}
val estimatedFeatureCount
= if (includeEstimatedFeatures && pool.data.schema.fieldNames.contains("_estimatedFeatures")) {
updateColumnWithType("_estimatedFeatures", "_estimatedFeatures")
Some(pool.getEstimatedFeatureCount)
} else {
None
}
if (includeDatasetIdx) {
updateColumnWithType("_datasetIdx", "_datasetIdx")
}
val dstColumnIndices = new mutable.ArrayBuffer[Int]()
for (dstColumnName <- dstColumnNames) {
val selectedIdx = columnsList.indexOf(dstColumnName)
if (selectedIdx == -1) {
columnsList += dstColumnName
dstColumnIndices += i
i = i + 1
} else {
dstColumnIndices += selectedIdx
}
}
(columnTypesMap, columnsList.toArray, dstColumnIndices.toArray, estimatedFeatureCount)
}
/**
* @returns (
* data with columns for training,
* map of column type -> index in selected schema,
* estimatedFeatureCount
* )
*/
def selectColumnsForTrainingAndReturnIndex(
data: DatasetForTraining,
includeFeatures: Boolean,
includeSampleId: Boolean,
includeEstimatedFeatures: Boolean,
includeDatasetIdx: Boolean
) : (DatasetForTraining, HashMap[String, Int], Option[Int]) = {
// Pool param name is columnTypeName + "Col"
val columnTypeNames = mutable.ArrayBuffer[String](
"label",
"weight",
"groupWeight",
"baseline",
"groupId",
"subgroupId",
"timestamp"
)
if (includeFeatures) {
columnTypeNames += "features"
}
if (includeSampleId) {
columnTypeNames += "sampleId"
}
val (columnIndexMap, selectedColumnNames, _, estimatedFeatureCount) = selectColumnsAndReturnIndex(
data.srcPool,
columnTypeNames.toSeq,
includeEstimatedFeatures,
includeDatasetIdx=includeDatasetIdx && data.isInstanceOf[UsualDatasetForTraining]
)
val selectedData = data match {
case UsualDatasetForTraining(srcPool, dataFrame, datasetIdx) => {
UsualDatasetForTraining(
srcPool,
dataFrame.select(selectedColumnNames.head, selectedColumnNames.tail: _*),
datasetIdx
)
}
case DatasetForTrainingWithPairs(srcPool, groupData, mainDataSchema, datasetIdx) => {
val selectedColumnIndices = selectedColumnNames.map{ mainDataSchema.fieldIndex(_) }
val selectedGroupData = groupData.map {
case (key, (mainPart, pairsPart)) => {
(
key,
(
mainPart.map {
case mainGroupData => mainGroupData.map {
case row => Row.fromSeq(selectedColumnIndices.map{ row(_) }.toSeq)
}
},
pairsPart
)
)
}
}
DatasetForTrainingWithPairs(
srcPool,
selectedGroupData,
StructType(selectedColumnIndices.map{ mainDataSchema(_) }),
datasetIdx
)
}
}
(selectedData, columnIndexMap, estimatedFeatureCount)
}
def getCogroupedMainAndPairsRDD(
mainData: DataFrame,
mainDataGroupIdFieldIdx: Int,
pairsData: DataFrame,
datasetIdx : Byte = 0,
numPartitions : Option[Int] = None
) : RDD[PreparedGroupData] = {
val groupedMainData = mainData.rdd.groupBy(row => (datasetIdx, row.getLong(mainDataGroupIdFieldIdx)))
val pairsGroupIdx = pairsData.schema.fieldIndex("groupId")
val groupedPairsData = pairsData.rdd.groupBy(row => (datasetIdx, row.getLong(pairsGroupIdx)))
numPartitions match {
case Some(numPartitions) => groupedMainData.cogroup(groupedPairsData, numPartitions)
case None => groupedMainData.cogroup(groupedPairsData)
}
}
/**
* @return (path to main quantized features file, optional path to pairs data (in 'dsv-grouped' format), path to estimated quantized features file)
* Path to estimated quantized features file will be null if
* includeEstimatedFeatures = false or no actual estimated features data is present is pool.
*/
def downloadQuantizedPoolToTempFiles(
data: DatasetForTraining,
includeFeatures: Boolean,
includeEstimatedFeatures: Boolean,
localExecutor: TLocalExecutor,
dataPartName: String,
log: Logger,
tmpFilePrefix: String = null,
tmpFileSuffix: String = null
) : PoolFilesPaths = {
log.info(s"downloadQuantizedPoolToTempFiles for ${dataPartName}: start")
val (selectedData, columnIndexMap, estimatedFeatureCount) = selectColumnsForTrainingAndReturnIndex(
data,
includeFeatures,
includeSampleId = data.isInstanceOf[DatasetForTrainingWithPairs],
includeEstimatedFeatures,
includeDatasetIdx=false
)
val (mainDataProviders, estimatedDataProviders, _) = selectedData match {
case UsualDatasetForTraining(srcPool, selectedDF, _) => {
log.info(s"loadQuantizedDatasets for ${dataPartName}: start")
val result = loadQuantizedDatasets(
/*datasetCount*/ 1,
srcPool.quantizedFeaturesInfo,
columnIndexMap,
srcPool.createDataMetaInfo(),
selectedDF.schema,
estimatedFeatureCount,
localExecutor,
selectedDF.toLocalIterator.asScala
)
log.info(s"loadQuantizedDatasets for ${dataPartName}: finish")
result
}
case DatasetForTrainingWithPairs(srcPool, selectedGroupData, selectedMainDataSchema, _) => {
log.info(s"loadQuantizedDatasetsWithPairs for ${dataPartName}: start")
val result = loadQuantizedDatasetsWithPairs(
/*datasetOffset*/ data.datasetIdx,
/*datasetCount*/ 1,
srcPool.quantizedFeaturesInfo,
columnIndexMap,
srcPool.createDataMetaInfo(),
selectedMainDataSchema,
srcPool.pairsData.schema,
estimatedFeatureCount,
localExecutor,
selectedGroupData.toLocalIterator
)
log.info(s"loadQuantizedDatasetsWithPairs for ${dataPartName}: finish")
result
}
}
log.info(s"${dataPartName}: save loaded data to files: start")
val mainDataProvider = mainDataProviders.get(0)
val tmpMainFilePath = Files.createTempFile(tmpFilePrefix, tmpFileSuffix)
tmpMainFilePath.toFile.deleteOnExit
native_impl.SaveQuantizedPool(mainDataProvider, tmpMainFilePath.toString)
var tmpPairsDataFilePath : Option[Path] = None
if (data.isInstanceOf[DatasetForTrainingWithPairs]) {
tmpPairsDataFilePath = Some(Files.createTempFile(tmpFilePrefix, tmpFileSuffix))
tmpPairsDataFilePath.get.toFile.deleteOnExit
native_impl.SavePairsInGroupedDsvFormat(mainDataProvider, tmpPairsDataFilePath.get.toString)
}
var tmpEstimatedFilePath : Option[Path] = None
if (estimatedFeatureCount.isDefined) {
tmpEstimatedFilePath = Some(Files.createTempFile(tmpFilePrefix, tmpFileSuffix))
tmpEstimatedFilePath.get.toFile.deleteOnExit
native_impl.SaveQuantizedPool(estimatedDataProviders.get(0), tmpEstimatedFilePath.get.toString)
}
log.info(s"${dataPartName}: save loaded data to files: finish")
log.info(s"downloadQuantizedPoolToTempFiles for ${dataPartName}: finish")
new PoolFilesPaths(tmpMainFilePath, tmpPairsDataFilePath, tmpEstimatedFilePath)
}
def downloadSubsetOfQuantizedFeatures(
pool: Pool,
quantizedFeaturesIndices: QuantizedFeaturesIndices,
selectedFeaturesFlatIndices: Set[Int],
localExecutor: TLocalExecutor
) : TQuantizedObjectsDataProviderPtr = {
if (!pool.isQuantized) {
throw new CatBoostError("downloadSubsetOfQuantizedFeatures is applicable only for quantized pools")
}
val selectedFeaturesOffsets = SelectedFeaturesOffsets(
pool.quantizedFeaturesInfo,
quantizedFeaturesIndices,
selectedFeaturesFlatIndices)
val selectedFeaturesByteSize = selectedFeaturesOffsets.getByteSize
val selectedFeaturesSchema = StructType(Seq(StructField("features", BinaryType, false)))
val selectedFeaturesEncoder = RowEncoderConstructor.construct(selectedFeaturesSchema)
val selectedFeaturesDf = pool.data.select(pool.getFeaturesCol).mapPartitions(
rows => {
val buffer = new Array[Byte](selectedFeaturesByteSize)
rows.map(
row => {
val srcByteBuffer = java.nio.ByteBuffer.wrap(row.getAs[Array[Byte]](0))
srcByteBuffer.order(java.nio.ByteOrder.nativeOrder)
val dstByteBuffer = java.nio.ByteBuffer.wrap(buffer)
dstByteBuffer.order(java.nio.ByteOrder.nativeOrder)
for (offset <- selectedFeaturesOffsets.ui8Offsets) {
dstByteBuffer.put(srcByteBuffer.get(offset))
}
for (offset <- selectedFeaturesOffsets.ui16Offsets) {
dstByteBuffer.putShort(srcByteBuffer.getShort(offset))
}
for (offset <- selectedFeaturesOffsets.ui32Offsets) {
dstByteBuffer.putInt(srcByteBuffer.getInt(offset))
}
Row(buffer)
}
)
}
)(selectedFeaturesEncoder)
val dataMetaInfo = new TIntermediateDataMetaInfo
dataMetaInfo.setFeaturesLayout(
native_impl.CloneWithSelectedFeatures(
pool.quantizedFeaturesInfo.GetFeaturesLayout.__deref__,
selectedFeaturesFlatIndices.toArray
)
)
loadQuantizedDatasets(
/*datasetCount*/ 1,
pool.quantizedFeaturesInfo,
HashMap[String,Int]("features" -> 0),
dataMetaInfo,
selectedFeaturesSchema,
/*estimatedFeatureCount*/ None,
localExecutor,
selectedFeaturesDf.toLocalIterator.asScala
)._1.get(0).GetQuantizedObjectsDataProvider()
}
}
© 2015 - 2024 Weber Informatics LLC | Privacy Policy