ai.catboost.spark.impl.Master.scala Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of catboost-spark_3.5_2.13 Show documentation
Show all versions of catboost-spark_3.5_2.13 Show documentation
JVM module to use CatBoost on Apache Spark
The newest version!
package ai.catboost.spark.impl
import collection.mutable
import concurrent.duration.Duration
import concurrent.{Await,Future}
import concurrent.ExecutionContext.Implicits.global
import scala.util.control.Breaks._
import java.io.{BufferedReader,InputStreamReader}
import java.nio.charset.StandardCharsets
import java.nio.file._
import java.util.concurrent.Callable
import java.util.regex.Pattern
import org.apache.commons.io.FileUtils
import org.apache.spark.internal.Logging
import org.apache.spark.sql.SparkSession
import ru.yandex.catboost.spark.catboost4j_spark.core.src.native_impl
import ai.catboost.CatBoostError
import ai.catboost.spark._
private[spark] object CatBoostMasterWrapper {
// use this method to create Master instances
def apply(
preparedTrainPool: DatasetForTraining,
preparedEvalPools: Seq[DatasetForTraining],
catBoostJsonParamsForMasterString: String,
precomputedOnlineCtrMetaDataAsJsonString: String
) : CatBoostMasterWrapper = {
val spark = preparedTrainPool.srcPool.data.sparkSession
val result = new CatBoostMasterWrapper(
spark,
catBoostJsonParamsForMasterString,
precomputedOnlineCtrMetaDataAsJsonString
)
result.savedPoolsFuture = Future {
val threadCount = SparkHelpers.getThreadCountForDriver(spark)
val localExecutor = new native_impl.TLocalExecutor
localExecutor.Init(threadCount)
val trainPoolFiles = DataHelpers.downloadQuantizedPoolToTempFiles(
preparedTrainPool,
includeFeatures=false,
includeEstimatedFeatures=false,
localExecutor=localExecutor,
dataPartName="Learn Dataset",
log=result.log
)
val testPoolsFiles = preparedEvalPools.zipWithIndex.map {
case (testPool, idx) => DataHelpers.downloadQuantizedPoolToTempFiles(
testPool,
includeFeatures=false,
includeEstimatedFeatures=false,
localExecutor=localExecutor,
dataPartName=s"Eval Dataset #${idx}",
log=result.log
)
}.toArray
(trainPoolFiles, testPoolsFiles)
}
result
}
}
private[spark] class CatBoostMasterWrapper (
val spark: SparkSession,
val catBoostJsonParamsForMasterString: String,
val precomputedOnlineCtrMetaDataAsJsonString: String,
var savedPoolsFuture : Future[(PoolFilesPaths, Array[PoolFilesPaths])] = null, // inited later
// will be set in trainCallback, called from the trainingDriver's run()
var nativeModelResult : native_impl.TFullModel = null
) extends Logging {
/**
* If master failed because of lost connection to workers throws CatBoostWorkersConnectionLostException
*/
def trainCallback(workersInfo: Array[WorkerInfo]) = {
if (nativeModelResult != null) {
throw new CatBoostError(
"[Internal error] trainCallback is called again despite nativeModelResult already assigned"
)
}
val tmpDirPath = Files.createTempDirectory("catboost_train")
val hostsFilePath = tmpDirPath.resolve("worker_hosts.txt")
TrainingDriver.saveHostsListToFile(hostsFilePath, workersInfo)
val resultModelFilePath = tmpDirPath.resolve("result_model.cbm")
val jsonParamsFile = tmpDirPath.resolve("json_params")
Files.write(jsonParamsFile, catBoostJsonParamsForMasterString.getBytes(StandardCharsets.UTF_8))
var precomputedOnlineCtrMetaDataFile: Path = null
if (precomputedOnlineCtrMetaDataAsJsonString != null) {
precomputedOnlineCtrMetaDataFile = tmpDirPath.resolve("precomputed_online_ctr_metadata")
Files.write(
precomputedOnlineCtrMetaDataFile,
precomputedOnlineCtrMetaDataAsJsonString.getBytes(StandardCharsets.UTF_8)
)
}
val args = mutable.ArrayBuffer[String](
"--node-type", "Master",
"--thread-count", SparkHelpers.getThreadCountForDriver(spark).toString,
"--params-file", jsonParamsFile.toString,
"--file-with-hosts", hostsFilePath.toString,
"--hosts-already-contain-loaded-data",
/* permutations on master are impossible when data is preloaded on hosts, shuffling is performed in Spark
* on the preprocessing phase
*/
"--has-time",
"--max-ctr-complexity", "1",
"--final-ctr-computation-mode", "Skip", // final ctrs are computed in post-processing
"--model-file", resultModelFilePath.toString
)
val driverNativeMemoryLimit = SparkHelpers.getDriverNativeMemoryLimit(spark)
if (driverNativeMemoryLimit.isDefined) {
args += ("--used-ram-limit", driverNativeMemoryLimit.get.toString)
}
if (precomputedOnlineCtrMetaDataAsJsonString != null) {
args += ("--precomputed-data-meta", precomputedOnlineCtrMetaDataFile.toString)
}
log.info("Wait until Dataset data parts are ready.")
val (savedTrainPool, savedEvalPools) = Await.result(savedPoolsFuture, Duration.Inf)
log.info("Dataset data parts are ready. Start CatBoost Master process.")
args += ("--learn-set", "spark-quantized://master-part:" + savedTrainPool.mainData.toString)
if (savedTrainPool.pairsData.isDefined) {
args += ("--learn-pairs", "dsv-grouped-with-idx://" + savedTrainPool.pairsData.get.toString)
}
if (!savedEvalPools.isEmpty) {
args += (
"--test-set",
savedEvalPools.map(
poolFilesPaths => "spark-quantized://master-part:" + poolFilesPaths.mainData
).mkString(",")
)
if (savedTrainPool.pairsData.isDefined) { // if train pool has pairs so do test pools
args += (
"--test-pairs",
savedEvalPools.map(
poolFilesPaths => "dsv-grouped-with-idx://" + poolFilesPaths.pairsData.get.toString
).mkString(",")
)
}
}
val masterAppProcess = RunClassInNewProcess(
MasterApp.getClass,
args = Some(args.toArray),
inheritIO=false,
redirectOutput = Some(ProcessBuilder.Redirect.INHERIT),
redirectError = Some(ProcessBuilder.Redirect.PIPE)
)
/*
* Parse PAR errors from stderr
* Very hackish but there's no other way to get information why the process was aborted
*/
val failedBecauseOfWorkerConnectionLostRegexp = Pattern.compile(
"^FAIL.*(got unexpected network error, no retries rest|reply isn't OK)$"
)
var failedBecauseOfWorkerConnectionLost = false
val errorStreamReader = new BufferedReader(new InputStreamReader(masterAppProcess.getErrorStream()))
try {
breakable {
while (true) {
val line = errorStreamReader.readLine
if (line == null) {
break
}
System.err.println("[CatBoost Master] " + line)
if (failedBecauseOfWorkerConnectionLostRegexp.matcher(line).matches) {
failedBecauseOfWorkerConnectionLost = true
}
}
}
} finally {
errorStreamReader.close
}
val returnValue = masterAppProcess.waitFor
if (returnValue != 0) {
if (failedBecauseOfWorkerConnectionLost) {
throw new CatBoostWorkersConnectionLostException("")
}
throw new CatBoostError(s"CatBoost Master process failed: exited with code $returnValue")
}
log.info("CatBoost Master process finished successfully.")
log.info("Trained model: start loading")
nativeModelResult = native_impl.native_impl.ReadModel(resultModelFilePath.toString)
log.info("Trained model: finish loading")
FileUtils.deleteDirectory(tmpDirPath.toFile)
}
}
© 2015 - 2024 Weber Informatics LLC | Privacy Policy