
ai.djl.huggingface.translator.TextEmbeddingTranslator Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of tokenizers Show documentation
Show all versions of tokenizers Show documentation
Deep Java Library (DJL) NLP utilities for Huggingface tokenizers
/*
* Copyright 2022 Amazon.com, Inc. or its affiliates. All Rights Reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License"). You may not use this file except in compliance
* with the License. A copy of the License is located at
*
* http://aws.amazon.com/apache2.0/
*
* or in the "license" file accompanying this file. This file is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES
* OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions
* and limitations under the License.
*/
package ai.djl.huggingface.translator;
import ai.djl.huggingface.tokenizers.Encoding;
import ai.djl.huggingface.tokenizers.HuggingFaceTokenizer;
import ai.djl.ndarray.NDArray;
import ai.djl.ndarray.NDList;
import ai.djl.ndarray.NDManager;
import ai.djl.ndarray.types.DataType;
import ai.djl.translate.ArgumentsUtil;
import ai.djl.translate.Batchifier;
import ai.djl.translate.Translator;
import ai.djl.translate.TranslatorContext;
import java.io.IOException;
import java.util.Map;
/** The translator for Huggingface text embedding model. */
public class TextEmbeddingTranslator implements Translator {
private static final int[] AXIS = {0};
private HuggingFaceTokenizer tokenizer;
private Batchifier batchifier;
private boolean normalize;
private String pooling;
TextEmbeddingTranslator(
HuggingFaceTokenizer tokenizer,
Batchifier batchifier,
String pooling,
boolean normalize) {
this.tokenizer = tokenizer;
this.batchifier = batchifier;
this.pooling = pooling;
this.normalize = normalize;
}
/** {@inheritDoc} */
@Override
public Batchifier getBatchifier() {
return batchifier;
}
/** {@inheritDoc} */
@Override
public NDList processInput(TranslatorContext ctx, String input) {
Encoding encoding = tokenizer.encode(input);
ctx.setAttachment("encoding", encoding);
return encoding.toNDList(ctx.getNDManager(), false);
}
/** {@inheritDoc} */
@Override
public float[] processOutput(TranslatorContext ctx, NDList list) {
Encoding encoding = (Encoding) ctx.getAttachment("encoding");
NDManager manager = ctx.getNDManager();
NDArray embeddings = processEmbedding(manager, list, encoding, pooling);
if (normalize) {
embeddings = embeddings.normalize(2, 0);
}
return embeddings.toFloatArray();
}
/** {@inheritDoc} */
@Override
public TextEmbeddingBatchTranslator toBatchTranslator(Batchifier batchifier) {
tokenizer.enableBatch();
return new TextEmbeddingBatchTranslator(tokenizer, batchifier, pooling, normalize);
}
static NDArray processEmbedding(
NDManager manager, NDList list, Encoding encoding, String pooling) {
NDArray embedding = list.get("last_hidden_state");
long[] attentionMask = encoding.getAttentionMask();
NDArray inputAttentionMask = manager.create(attentionMask).toType(DataType.FLOAT32, true);
switch (pooling) {
case "mean":
return meanPool(embedding, inputAttentionMask, false);
case "mean_sqrt_len":
return meanPool(embedding, inputAttentionMask, true);
case "max":
return maxPool(embedding, inputAttentionMask);
case "weightedmean":
return weightedMeanPool(embedding, inputAttentionMask);
case "cls":
return embedding.get(0);
default:
throw new AssertionError("Unexpected pooling mode: " + pooling);
}
}
private static NDArray meanPool(NDArray embeddings, NDArray attentionMask, boolean sqrt) {
long[] shape = embeddings.getShape().getShape();
attentionMask = attentionMask.expandDims(-1).broadcast(shape);
NDArray inputAttentionMaskSum = attentionMask.sum(AXIS);
NDArray clamp = inputAttentionMaskSum.clip(1e-9, 1e12);
NDArray prod = embeddings.mul(attentionMask);
NDArray sum = prod.sum(AXIS);
if (sqrt) {
return sum.div(clamp.sqrt());
}
return sum.div(clamp);
}
private static NDArray maxPool(NDArray embeddings, NDArray inputAttentionMask) {
long[] shape = embeddings.getShape().getShape();
inputAttentionMask = inputAttentionMask.expandDims(-1).broadcast(shape);
inputAttentionMask = inputAttentionMask.eq(0);
embeddings = embeddings.duplicate();
embeddings.set(inputAttentionMask, -1e9); // Set padding tokens to large negative value
return embeddings.max(AXIS, true);
}
private static NDArray weightedMeanPool(NDArray embeddings, NDArray attentionMask) {
long[] shape = embeddings.getShape().getShape();
NDArray weight = embeddings.getManager().arange(1, shape[0] + 1);
weight = weight.expandDims(-1).broadcast(shape);
attentionMask = attentionMask.expandDims(-1).broadcast(shape).mul(weight);
NDArray maskSum = attentionMask.sum(AXIS);
NDArray embeddingSum = embeddings.mul(attentionMask).sum(AXIS);
return embeddingSum.div(maskSum);
}
/**
* Creates a builder to build a {@code TextEmbeddingTranslator}.
*
* @param tokenizer the tokenizer
* @return a new builder
*/
public static Builder builder(HuggingFaceTokenizer tokenizer) {
return new Builder(tokenizer);
}
/**
* Creates a builder to build a {@code TextEmbeddingTranslator}.
*
* @param tokenizer the tokenizer
* @param arguments the models' arguments
* @return a new builder
*/
public static Builder builder(HuggingFaceTokenizer tokenizer, Map arguments) {
Builder builder = builder(tokenizer);
builder.configure(arguments);
return builder;
}
/** The builder for token classification translator. */
public static final class Builder {
private HuggingFaceTokenizer tokenizer;
private Batchifier batchifier = Batchifier.STACK;
private boolean normalize = true;
private String pooling = "mean";
Builder(HuggingFaceTokenizer tokenizer) {
this.tokenizer = tokenizer;
}
/**
* Sets the {@link Batchifier} for the {@link Translator}.
*
* @param batchifier true to include token types
* @return this builder
*/
public Builder optBatchifier(Batchifier batchifier) {
this.batchifier = batchifier;
return this;
}
/**
* Sets the {@code normalize} for the {@link Translator}.
*
* @param normalize true to normalize the embeddings
* @return this builder
*/
public Builder optNormalize(boolean normalize) {
this.normalize = normalize;
return this;
}
/**
* Sets the pooling for the {@link Translator}.
*
* @param poolingMode the pooling model, one of mean_pool, max_pool and cls
* @return this builder
*/
public Builder optPoolingMode(String poolingMode) {
if (!"mean".equals(poolingMode)
&& !"max".equals(poolingMode)
&& !"cls".equals(poolingMode)
&& !"mean_sqrt_len".equals(poolingMode)
&& !"weightedmean".equals(poolingMode)) {
throw new IllegalArgumentException(
"Invalid pooling model, must be one of [mean, max, cls, mean_sqrt_len,"
+ " weightedmean].");
}
this.pooling = poolingMode;
return this;
}
/**
* Configures the builder with the model arguments.
*
* @param arguments the model arguments
*/
public void configure(Map arguments) {
String batchifierStr = ArgumentsUtil.stringValue(arguments, "batchifier", "stack");
optBatchifier(Batchifier.fromString(batchifierStr));
optNormalize(ArgumentsUtil.booleanValue(arguments, "normalize", true));
optPoolingMode(ArgumentsUtil.stringValue(arguments, "pooling", "mean"));
}
/**
* Builds the translator.
*
* @return the new translator
* @throws IOException if I/O error occurs
*/
public TextEmbeddingTranslator build() throws IOException {
return new TextEmbeddingTranslator(tokenizer, batchifier, pooling, normalize);
}
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy