ai.djl.huggingface.translator.QuestionAnsweringTranslator Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of tokenizers Show documentation
Show all versions of tokenizers Show documentation
Deep Java Library (DJL) NLP utilities for Huggingface tokenizers
The newest version!
/*
* Copyright 2022 Amazon.com, Inc. or its affiliates. All Rights Reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License"). You may not use this file except in compliance
* with the License. A copy of the License is located at
*
* http://aws.amazon.com/apache2.0/
*
* or in the "license" file accompanying this file. This file is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES
* OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions
* and limitations under the License.
*/
package ai.djl.huggingface.translator;
import ai.djl.huggingface.tokenizers.Encoding;
import ai.djl.huggingface.tokenizers.HuggingFaceTokenizer;
import ai.djl.modality.nlp.qa.QAInput;
import ai.djl.ndarray.NDArray;
import ai.djl.ndarray.NDList;
import ai.djl.ndarray.NDManager;
import ai.djl.ndarray.index.NDIndex;
import ai.djl.translate.ArgumentsUtil;
import ai.djl.translate.Batchifier;
import ai.djl.translate.Translator;
import ai.djl.translate.TranslatorContext;
import ai.djl.util.PairList;
import java.io.IOException;
import java.util.ArrayList;
import java.util.List;
import java.util.Map;
/** The translator for Huggingface question answering model. */
public class QuestionAnsweringTranslator implements Translator {
private HuggingFaceTokenizer tokenizer;
private boolean includeTokenTypes;
private Batchifier batchifier;
QuestionAnsweringTranslator(
HuggingFaceTokenizer tokenizer, boolean includeTokenTypes, Batchifier batchifier) {
this.tokenizer = tokenizer;
this.includeTokenTypes = includeTokenTypes;
this.batchifier = batchifier;
}
/** {@inheritDoc} */
@Override
public Batchifier getBatchifier() {
return batchifier;
}
/** {@inheritDoc} */
@Override
public NDList processInput(TranslatorContext ctx, QAInput input) {
Encoding encoding = tokenizer.encode(input.getQuestion(), input.getParagraph());
ctx.setAttachment("encoding", encoding);
return encoding.toNDList(ctx.getNDManager(), includeTokenTypes);
}
/** {@inheritDoc} */
@Override
public NDList batchProcessInput(TranslatorContext ctx, List inputs) {
NDManager manager = ctx.getNDManager();
PairList pair = new PairList<>(inputs.size());
for (QAInput input : inputs) {
pair.add(input.getQuestion(), input.getParagraph());
}
Encoding[] encodings = tokenizer.batchEncode(pair);
ctx.setAttachment("encodings", encodings);
NDList[] batch = new NDList[encodings.length];
for (int i = 0; i < encodings.length; ++i) {
batch[i] = encodings[i].toNDList(manager, includeTokenTypes);
}
return batchifier.batchify(batch);
}
/** {@inheritDoc} */
@Override
public String processOutput(TranslatorContext ctx, NDList list) {
Encoding encoding = (Encoding) ctx.getAttachment("encoding");
return decode(list, encoding);
}
/** {@inheritDoc} */
@Override
public List batchProcessOutput(TranslatorContext ctx, NDList list) {
NDList[] batch = batchifier.unbatchify(list);
Encoding[] encodings = (Encoding[]) ctx.getAttachment("encodings");
List ret = new ArrayList<>(batch.length);
for (int i = 0; i < encodings.length; ++i) {
ret.add(decode(batch[i], encodings[i]));
}
return ret;
}
private String decode(NDList list, Encoding encoding) {
NDArray startLogits = list.get(0);
NDArray endLogits = list.get(1);
if ("PyTorch".equals(startLogits.getManager().getEngine().getEngineName())) {
// PyTorch InferenceMode tensor is read only, must clone it
startLogits = startLogits.duplicate();
endLogits = endLogits.duplicate();
}
// exclude , TODO: exclude impossible ids properly and handle max answer length
startLogits.set(new NDIndex(0), -100000);
endLogits.set(new NDIndex(0), -100000);
int startIdx = (int) startLogits.argMax().getLong();
int endIdx = (int) endLogits.argMax().getLong();
if (startIdx > endIdx) {
int tmp = startIdx;
startIdx = endIdx;
endIdx = tmp;
}
long[] indices = encoding.getIds();
int len = endIdx - startIdx + 1;
long[] ids = new long[len];
System.arraycopy(indices, startIdx, ids, 0, len);
return tokenizer.decode(ids).trim();
}
/**
* Creates a builder to build a {@code QuestionAnsweringTranslator}.
*
* @param tokenizer the tokenizer
* @return a new builder
*/
public static Builder builder(HuggingFaceTokenizer tokenizer) {
return new Builder(tokenizer);
}
/**
* Creates a builder to build a {@code QuestionAnsweringTranslator}.
*
* @param tokenizer the tokenizer
* @param arguments the models' arguments
* @return a new builder
*/
public static Builder builder(HuggingFaceTokenizer tokenizer, Map arguments) {
Builder builder = builder(tokenizer);
builder.configure(arguments);
return builder;
}
/** The builder for question answering translator. */
public static final class Builder {
private HuggingFaceTokenizer tokenizer;
private boolean includeTokenTypes;
private Batchifier batchifier = Batchifier.STACK;
Builder(HuggingFaceTokenizer tokenizer) {
this.tokenizer = tokenizer;
}
/**
* Sets if include token types for the {@link Translator}.
*
* @param includeTokenTypes true to include token types
* @return this builder
*/
public Builder optIncludeTokenTypes(boolean includeTokenTypes) {
this.includeTokenTypes = includeTokenTypes;
return this;
}
/**
* Sets the {@link Batchifier} for the {@link Translator}.
*
* @param batchifier true to include token types
* @return this builder
*/
public Builder optBatchifier(Batchifier batchifier) {
this.batchifier = batchifier;
return this;
}
/**
* Configures the builder with the model arguments.
*
* @param arguments the model arguments
*/
public void configure(Map arguments) {
optIncludeTokenTypes(ArgumentsUtil.booleanValue(arguments, "includeTokenTypes"));
String batchifierStr = ArgumentsUtil.stringValue(arguments, "batchifier", "stack");
optBatchifier(Batchifier.fromString(batchifierStr));
}
/**
* Builds the translator.
*
* @return the new translator
* @throws IOException if I/O error occurs
*/
public QuestionAnsweringTranslator build() throws IOException {
return new QuestionAnsweringTranslator(tokenizer, includeTokenTypes, batchifier);
}
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy