All Downloads are FREE. Search and download functionalities are using the official Maven repository.

ai.djl.mxnet.engine.MxNDManager Maven / Gradle / Ivy

There is a newer version: 0.31.1
Show newest version
/*
 * Copyright 2019 Amazon.com, Inc. or its affiliates. All Rights Reserved.
 *
 * Licensed under the Apache License, Version 2.0 (the "License"). You may not use this file except in compliance
 * with the License. A copy of the License is located at
 *
 * http://aws.amazon.com/apache2.0/
 *
 * or in the "license" file accompanying this file. This file is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES
 * OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions
 * and limitations under the License.
 */
package ai.djl.mxnet.engine;

import ai.djl.Device;
import ai.djl.engine.Engine;
import ai.djl.engine.EngineException;
import ai.djl.mxnet.jna.JnaUtils;
import ai.djl.ndarray.BaseNDManager;
import ai.djl.ndarray.NDArray;
import ai.djl.ndarray.NDList;
import ai.djl.ndarray.NDManager;
import ai.djl.ndarray.types.DataType;
import ai.djl.ndarray.types.Shape;
import ai.djl.ndarray.types.SparseFormat;
import ai.djl.util.PairList;

import com.sun.jna.Pointer;

import java.nio.Buffer;
import java.nio.ByteBuffer;
import java.nio.ByteOrder;
import java.nio.file.Path;

/** {@code MxNDManager} is the MXNet implementation of {@link NDManager}. */
public class MxNDManager extends BaseNDManager {

    /**
     * A global {@link NDManager} singleton instance.
     *
     * 

This NDManager is the root of all the other {@code NDManager}s. NDArrays created by this * manager are un-managed, so the user has to close them manually. Those NDArrays will be * released on GC, and might be run into an out of native memory issue. */ private static final MxNDManager SYSTEM_MANAGER = new SystemManager(); private static final NDArray[] EMPTY = new NDArray[0]; private int version; private MxNDManager(NDManager parent, Device device, int version) { super(parent, device); this.version = version; } static MxNDManager getSystemManager() { return SYSTEM_MANAGER; } /** {@inheritDoc} */ @Override public ByteBuffer allocateDirect(int capacity) { return ByteBuffer.allocateDirect(capacity).order(ByteOrder.nativeOrder()); } /** {@inheritDoc} */ @Override public MxNDArray from(NDArray array) { if (array == null || array instanceof MxNDArray) { return (MxNDArray) array; } MxNDArray ret = create(array.getShape(), array.getDataType()); ret.set(array.toByteBuffer()); ret.setName(array.getName()); return ret; } /** * Creates an MxNDArray with the given Native Memory Pointer and attaches to this manager. * * @param handle the array's native memory pointer * @return the created array */ public MxNDArray create(Pointer handle) { return new MxNDArray(this, handle); } /** * Creates a sparse MxNDArray with the given Native Memory Pointer and attaches to this manager. * * @param handle the array's native memory pointer * @param fmt the sparse format to use * @return the created array */ public MxNDArray create(Pointer handle, SparseFormat fmt) { return new MxNDArray(this, handle, fmt); } /** {@inheritDoc} */ @Override public MxNDArray create(Shape shape, DataType dataType) { Pointer handle = JnaUtils.createNdArray(device, shape, dataType, shape.dimension(), false); return new MxNDArray(this, handle, device, shape, dataType, false); } /** {@inheritDoc} */ @Override public MxNDArray createCSR(Buffer data, long[] indptr, long[] indices, Shape shape) { SparseFormat fmt = SparseFormat.CSR; DataType dataType = DataType.fromBuffer(data); MxNDArray indptrNd = create(new Shape(indptr.length), DataType.INT64); indptrNd.set(indptr); MxNDArray indicesNd = create(new Shape(indices.length), DataType.INT64); indicesNd.set(indices); Pointer handle = JnaUtils.createSparseNdArray( fmt, device, shape, dataType, new DataType[] {indptrNd.getDataType(), indicesNd.getDataType()}, new Shape[] {indptrNd.getShape(), indicesNd.getShape()}, false); MxNDArray sparse = create(handle, fmt); MxNDArray dataNd = create(new Shape(data.remaining()), dataType); dataNd.set(data); JnaUtils.ndArraySyncCopyFromNdArray(sparse, dataNd, -1); JnaUtils.ndArraySyncCopyFromNdArray(sparse, indptrNd, 0); JnaUtils.ndArraySyncCopyFromNdArray(sparse, indicesNd, 1); return sparse; } /** {@inheritDoc} */ @Override public MxNDArray createRowSparse(Buffer data, Shape dataShape, long[] indices, Shape shape) { SparseFormat fmt = SparseFormat.ROW_SPARSE; DataType dataType = DataType.fromBuffer(data); MxNDArray indicesNd = create(new Shape(indices.length), DataType.INT64); indicesNd.set(indices); Pointer handle = JnaUtils.createSparseNdArray( fmt, device, shape, dataType, new DataType[] {indicesNd.getDataType()}, new Shape[] {indicesNd.getShape()}, false); MxNDArray sparse = create(handle, fmt); MxNDArray dataNd = create(dataShape, dataType); dataNd.set(data); JnaUtils.ndArraySyncCopyFromNdArray(sparse, dataNd, -1); JnaUtils.ndArraySyncCopyFromNdArray(sparse, indicesNd, 0); return sparse; } /** {@inheritDoc} */ @Override public NDList load(Path path) { return JnaUtils.loadNdArray(this, path, device); } /** {@inheritDoc} */ @Override public NDArray zeros(Shape shape, DataType dataType) { return fill("_npi_zeros", shape, dataType); } /** {@inheritDoc} */ @Override public NDArray ones(Shape shape, DataType dataType) { return fill("_npi_ones", shape, dataType); } /** {@inheritDoc} */ @Override public NDArray full(Shape shape, float value, DataType dataType) { MxOpParams params = new MxOpParams(); params.addParam("shape", shape); params.addParam("value", value); params.setDataType(dataType); params.setDevice(device); return invoke("_npi_full", params); } /** {@inheritDoc} */ @Override public NDArray arange(float start, float stop, float step, DataType dataType) { MxOpParams params = new MxOpParams(); params.addParam("start", start); params.addParam("stop", stop); params.addParam("step", step); params.setDataType(dataType); params.setDevice(device); return invoke("_npi_arange", params); } /** {@inheritDoc} */ @Override public NDArray eye(int rows, int cols, int k, DataType dataType) { MxOpParams params = new MxOpParams(); params.addParam("N", rows); params.addParam("M", cols); params.addParam("k", k); params.setDataType(dataType); params.setDevice(device); return invoke("_npi_eye", params); } /** {@inheritDoc} */ @Override public NDArray linspace(float start, float stop, int num, boolean endpoint) { if (num < 0) { throw new IllegalArgumentException("Num argument must be non-negative"); } MxOpParams params = new MxOpParams(); params.addParam("start", start); params.addParam("stop", stop); params.addParam("num", num); params.addParam("endpoint", endpoint); params.setDevice(device); return invoke("_npi_linspace", params); } /** {@inheritDoc} */ @Override public NDArray randomInteger(long low, long high, Shape shape, DataType dataType) { MxOpParams params = new MxOpParams(); params.addParam("low", low); params.addParam("high", high); params.addParam("shape", shape); params.setDevice(device); params.setDataType(dataType); return invoke("_npi_random_randint", params); } /** {@inheritDoc} */ @Override public NDArray randomPermutation(long n) { NDArray array = arange(0, n, 1, DataType.INT64); MxOpParams params = new MxOpParams(); return invoke("_npi_shuffle", new NDList(array), params).singletonOrThrow(); } /** {@inheritDoc} */ @Override public NDArray randomUniform(float low, float high, Shape shape, DataType dataType) { MxOpParams params = new MxOpParams(); params.addParam("low", low); params.addParam("high", high); params.addParam("size", shape); params.setDevice(device); params.setDataType(dataType); return invoke("_npi_uniform", params); } /** {@inheritDoc} */ @Override public NDArray randomNormal(float loc, float scale, Shape shape, DataType dataType) { MxOpParams params = new MxOpParams(); params.addParam("loc", loc); params.addParam("scale", scale); params.addParam("size", shape); params.setDevice(device); params.setDataType(dataType); return invoke("_npi_normal", params); } /** {@inheritDoc} */ @Override public NDArray randomMultinomial(int n, NDArray pValues, Shape shape) { MxOpParams params = new MxOpParams(); params.addParam("n", n); params.addParam("size", shape); return invoke("_npi_multinomial", pValues, params); } /** {@inheritDoc} */ @Override public NDArray randomMultinomial(int n, NDArray pValues) { MxOpParams params = new MxOpParams(); params.addParam("n", n); return invoke("_npi_multinomial", pValues, params); } /** {@inheritDoc} */ @Override public NDArray sampleNormal(NDArray mu, NDArray sigma) { return invoke("sample_normal", new NDArray[] {mu, sigma}, null); } /** {@inheritDoc} */ @Override public NDArray sampleNormal(NDArray mu, NDArray sigma, Shape shape) { MxOpParams params = new MxOpParams(); params.addParam("shape", shape); return invoke("sample_normal", new NDArray[] {mu, sigma}, params); } /** {@inheritDoc} */ @Override public NDArray samplePoisson(NDArray lam) { return invoke("sample_poisson", lam, null); } /** {@inheritDoc} */ @Override public NDArray samplePoisson(NDArray lam, Shape shape) { MxOpParams params = new MxOpParams(); params.addParam("shape", shape); return invoke("sample_poisson", lam, params); } /** {@inheritDoc} */ @Override public NDArray sampleGamma(NDArray alpha, NDArray beta) { return invoke("sample_gamma", new NDArray[] {alpha, beta}, null); } /** {@inheritDoc} */ @Override public NDArray sampleGamma(NDArray alpha, NDArray beta, Shape shape) { MxOpParams params = new MxOpParams(); params.addParam("shape", shape); return invoke("sample_gamma", new NDArray[] {alpha, beta}, params); } /** {@inheritDoc} */ @Override public MxNDManager newSubManager(Device dev) { MxNDManager manager = new MxNDManager(this, dev, version); attachUncappedInternal(manager.uid, manager); return manager; } /** {@inheritDoc} */ @Override public void invoke( String operation, NDArray[] src, NDArray[] dest, PairList params) { JnaUtils.op(operation).invoke(this, src, dest, params); } /** {@inheritDoc} */ @Override public NDList invoke(String operation, NDList src, PairList params) { return new NDList(JnaUtils.op(operation).invoke(this, src.toArray(EMPTY), params)); } /** * An engine specific generic invocation to native operator. * *

You should avoid using this function if possible. Since this function is engine specific, * using this API may cause portability issues. A native operation may not be compatible between * each version. * * @param operation the native operation to perform * @param src the {@link NDList} of source {@link NDArray} * @param dest the {@link NDList} to save output to * @param params the parameters to be passed to the native operator * @throws IllegalArgumentException if operation is not supported by Engine * @throws EngineException if operation failed in native engine */ public void invoke(String operation, NDList src, NDList dest, PairList params) { invoke(operation, src.toArray(EMPTY), dest.toArray(EMPTY), params); } /** * An engine specific generic invocation to native operator. * *

You should avoid using this function if possible. Since this function is engine specific, * using this API may cause portability issues. A native operation may not be compatible between * each version. * * @param operation the native operation to perform * @param src the array of source {@link NDArray} * @param params the parameters to be passed to the native operator * @return the output array of {@link NDArray} * @throws IllegalArgumentException if operation is not supported by Engine * @throws EngineException if operation failed in native engine */ public NDArray invoke(String operation, NDArray[] src, PairList params) { return JnaUtils.op(operation).invoke(this, src, params)[0]; } /** * An engine specific generic invocation to native operator. * *

You should avoid using this function if possible. Since this function is engine specific, * using this API may cause portability issues. A native operation may not be compatible between * each version. * * @param operation the native operation to perform * @param src the source {@link NDArray} * @param params the parameters to be passed to the native operator * @return the output array of {@link NDArray} * @throws IllegalArgumentException if operation is not supported by Engine * @throws EngineException if operation failed in native engine */ public NDArray invoke(String operation, NDArray src, PairList params) { return invoke(operation, new NDArray[] {src}, params); } /** * An engine specific generic invocation to native operator. * *

You should avoid using this function if possible. Since this function is engine specific, * using this API may cause portability issues. A native operation may not be compatible between * each version. * * @param operation the native operation to perform * @param params the parameters to be passed to the native operator * @return the output array of {@link NDArray} * @throws IllegalArgumentException if operation is not supported by Engine * @throws EngineException if operation failed in native engine */ public NDArray invoke(String operation, PairList params) { return invoke(operation, EMPTY, params); } /** {@inheritDoc} */ @Override public final Engine getEngine() { return Engine.getEngine(MxEngine.ENGINE_NAME); } private NDArray fill(String opName, Shape shape, DataType dataType) { MxOpParams params = new MxOpParams(); if (shape == null) { throw new IllegalArgumentException("Shape is required for " + opName.substring(1)); } params.addParam("shape", shape); params.setDevice(device); params.setDataType(dataType); return invoke(opName, params); } /** The SystemManager is the root {@link MxNDManager} of which all others are children. */ private static final class SystemManager extends MxNDManager implements SystemNDManager { SystemManager() { super(null, null, JnaUtils.getVersion()); } } }





© 2015 - 2025 Weber Informatics LLC | Privacy Policy