ai.djl.spark.task.text.TextEmbedder.scala Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of spark Show documentation
Show all versions of spark Show documentation
Apache Spark integration for DJL
The newest version!
/*
* Copyright 2023 Amazon.com, Inc. or its affiliates. All Rights Reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License"). You may not use this file except in compliance
* with the License. A copy of the License is located at
*
* http://aws.amazon.com/apache2.0/
*
* or in the "license" file accompanying this file. This file is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES
* OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions
* and limitations under the License.
*/
package ai.djl.spark.task.text
import ai.djl.spark.translator.text.TextEmbeddingTranslator
import org.apache.spark.ml.param.shared.{HasInputCol, HasOutputCol}
import org.apache.spark.ml.util.Identifiable
import org.apache.spark.sql.types.{ArrayType, FloatType, StructField, StructType}
import org.apache.spark.sql.{DataFrame, Dataset, Row}
/**
* TextEmbedder performs text embedding on text.
*
* @param uid An immutable unique ID for the object and its derivatives.
*/
class TextEmbedder(override val uid: String) extends TextPredictor[String, Array[Float]]
with HasInputCol with HasOutputCol {
def this() = this(Identifiable.randomUID("TextEmbedder"))
private var inputColIndex : Int = _
/**
* Sets the inputCol parameter.
*
* @param value the value of the parameter
*/
def setInputCol(value: String): this.type = set(inputCol, value)
/**
* Sets the outputCol parameter.
*
* @param value the value of the parameter
*/
def setOutputCol(value: String): this.type = set(outputCol, value)
setDefault(inputClass, classOf[String])
setDefault(outputClass, classOf[Array[Float]])
setDefault(translator, new TextEmbeddingTranslator())
/**
* Performs text embedding on the provided dataset.
*
* @param dataset input dataset
* @return output dataset
*/
def embed(dataset: Dataset[_]): DataFrame = {
transform(dataset)
}
/** @inheritdoc */
override def transform(dataset: Dataset[_]): DataFrame = {
inputColIndex = dataset.schema.fieldIndex($(inputCol))
super.transform(dataset)
}
/** @inheritdoc */
override protected def transformRows(iter: Iterator[Row]): Iterator[Row] = {
val predictor = model.newPredictor($(translator))
iter.map(row => {
Row.fromSeq(row.toSeq ++ Array[Any](predictor.predict(row.getString(inputColIndex))))
})
}
/** @inheritdoc */
override def transformSchema(schema: StructType): StructType = {
validateInputType(schema($(inputCol)))
val outputSchema = StructType(schema.fields ++
Array(StructField($(outputCol), ArrayType(FloatType))))
outputSchema
}
}
© 2015 - 2024 Weber Informatics LLC | Privacy Policy