ai.djl.spark.translator.vision.ImageClassificationTranslator.scala Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of spark Show documentation
Show all versions of spark Show documentation
Apache Spark integration for DJL
The newest version!
/*
* Copyright 2022 Amazon.com, Inc. or its affiliates. All Rights Reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License"). You may not use this file except in compliance
* with the License. A copy of the License is located at
*
* http://aws.amazon.com/apache2.0/
*
* or in the "license" file accompanying this file. This file is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES
* OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions
* and limitations under the License.
*/
package ai.djl.spark.translator.vision
import ai.djl.modality.Classifications
import ai.djl.modality.cv.transform.{Resize, ToTensor}
import ai.djl.ndarray.NDList
import ai.djl.ndarray.types.{DataType, Shape}
import ai.djl.translate.{Batchifier, Pipeline, Translator, TranslatorContext}
import ai.djl.util.Utils
import org.apache.spark.ml.image.ImageSchema
import org.apache.spark.sql.Row
import java.util
/** A [[ai.djl.translate.Translator]] for Image Classification tasks in Spark. */
@SerialVersionUID(1L)
class ImageClassificationTranslator extends Translator[Row, Classifications] with Serializable {
private var classes: util.List[String] = new util.ArrayList[String]()
@transient private lazy val pipeline = new Pipeline()
.add(new Resize(224, 224))
.add(new ToTensor())
/** @inheritdoc */
override def prepare(ctx: TranslatorContext): Unit = {
classes = Utils.readLines(ctx.getModel.getArtifact("synset.txt").openStream())
}
/** @inheritdoc */
override def processInput(ctx: TranslatorContext, input: Row): NDList = {
val height = ImageSchema.getHeight(input)
val width = ImageSchema.getWidth(input)
val channel = ImageSchema.getNChannels(input)
var image = ctx.getNDManager
.create(ImageSchema.getData(input), new Shape(height, width, channel))
.toType(DataType.UINT8, true)
// BGR to RGB
image = image.flip(2)
pipeline.transform(new NDList(image))
}
/** @inheritdoc */
override def processOutput(ctx: TranslatorContext, list: NDList): Classifications = {
var probabilitiesNd = list.singletonOrThrow
probabilitiesNd = probabilitiesNd.softmax(0)
new Classifications(classes, probabilitiesNd)
}
/** @inheritdoc */
override def getBatchifier: Batchifier = Batchifier.STACK
}
© 2015 - 2024 Weber Informatics LLC | Privacy Policy