ai.djl.nn.ParallelBlock Maven / Gradle / Ivy
/*
* Copyright 2019 Amazon.com, Inc. or its affiliates. All Rights Reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License"). You may not use this file except in compliance
* with the License. A copy of the License is located at
*
* http://aws.amazon.com/apache2.0/
*
* or in the "license" file accompanying this file. This file is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES
* OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions
* and limitations under the License.
*/
package ai.djl.nn;
import ai.djl.MalformedModelException;
import ai.djl.ndarray.NDList;
import ai.djl.ndarray.NDManager;
import ai.djl.ndarray.types.DataType;
import ai.djl.ndarray.types.Shape;
import ai.djl.training.ParameterStore;
import ai.djl.util.PairList;
import ai.djl.util.Preconditions;
import java.io.DataInputStream;
import java.io.IOException;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.Collection;
import java.util.Collections;
import java.util.List;
import java.util.function.Function;
import java.util.stream.Collectors;
/**
* {@code ParallelBlock} is a {@link Block} whose children form a parallel branch in the network and
* are combined to produce a single output.
*
*
{@code ParallelBlock} has no direct parameters.
*/
public class ParallelBlock extends AbstractBlock {
private static final byte VERSION = 2;
private Function, NDList> function;
/**
* Creates a parallel block whose branches are combined to form a single output by the given
* function.
*
* @param function the function to define how the parallel branches are combined to form a
* single output
*/
public ParallelBlock(Function, NDList> function) {
this(function, Collections.emptyList());
}
/**
* Creates a parallel block whose branches are formed by each block in the list of blocks, and
* are combined to form a single output by the given function.
*
* @param function the function to define how the parallel branches are combined
* @param blocks the blocks that form each of the parallel branches
*/
public ParallelBlock(Function, NDList> function, List blocks) {
super(VERSION);
this.function = function;
addAll(blocks);
}
/**
* Adds an array of blocks, each of which is a parallel branch.
*
* @param blocks the array of blocks to add
* @return this block
*/
public final ParallelBlock addAll(Block... blocks) {
return addAll(Arrays.asList(blocks));
}
/**
* Adds a {@link Collection} of blocks, each of which is a parallel branch.
*
* @param blocks the {@link Collection} of blocks to add
* @return this block
*/
public final ParallelBlock addAll(Collection blocks) {
blocks.forEach(this::add);
return this;
}
/**
* Adds the given {@link Block} to the block, which is one parallel branch.
*
* @param block the block to be added as a parallel branch
* @return this block
*/
public final ParallelBlock add(Block block) {
if (block != null) {
addChildBlock(block.getClass().getSimpleName(), block);
}
return this;
}
/**
* Adds a {@link LambdaBlock}, that applies the given function, to the list of parallel
* branches.
*
* @param f the function that forms the {@link LambdaBlock}
* @return this block
*/
public final ParallelBlock add(Function f) {
return add(new LambdaBlock(f));
}
/** {@inheritDoc} */
@Override
protected NDList forwardInternal(
ParameterStore parameterStore,
NDList inputs,
boolean training,
PairList params) {
return function.apply(
children.values()
.stream()
.map(block -> block.forward(parameterStore, inputs, training, params))
.collect(Collectors.toList()));
}
/** {@inheritDoc} */
@Override
protected NDList forwardInternal(
ParameterStore parameterStore,
NDList data,
NDList labels,
PairList params) {
return function.apply(
children.values()
.stream()
.map(block -> block.forward(parameterStore, data, labels, params))
.collect(Collectors.toList()));
}
/** {@inheritDoc} */
@Override
public void initializeChildBlocks(NDManager manager, DataType dataType, Shape... inputShapes) {
for (Block child : getChildren().values()) {
child.initialize(manager, dataType, inputShapes);
}
}
/** {@inheritDoc} */
@Override
public Shape[] getOutputShapes(Shape[] inputShapes) {
Preconditions.checkArgument(!children.isEmpty(), "The parallel block is empty");
try (NDManager manager = NDManager.newBaseManager()) {
List inputs = new ArrayList<>();
for (Block block : children.values()) {
Shape[] shapes = block.getOutputShapes(inputShapes);
NDList output = new NDList(shapes.length);
for (Shape shape : shapes) {
output.add(manager.create(shape));
}
inputs.add(output);
}
NDList output = function.apply(inputs);
Shape[] outputShapes = new Shape[output.size()];
for (int i = 0; i < output.size(); ++i) {
outputShapes[i] = output.get(i).getShape();
}
return outputShapes;
}
}
/** {@inheritDoc} */
@Override
public void loadMetadata(byte version, DataInputStream is)
throws IOException, MalformedModelException {
if (version == VERSION) {
readInputShapes(is);
} else if (version != 1) {
throw new MalformedModelException("Unsupported encoding version: " + version);
}
}
/** {@inheritDoc} */
@Override
public String toString() {
StringBuilder sb = new StringBuilder(200);
sb.append("Parallel(\n");
for (Block block : children.values()) {
String blockString = block.toString().replaceAll("(?m)^", "\t");
sb.append(blockString).append('\n');
}
sb.append(')');
return sb.toString();
}
}