All Downloads are FREE. Search and download functionalities are using the official Maven repository.

ai.djl.nn.recurrent.LSTM Maven / Gradle / Ivy

There is a newer version: 0.30.0
Show newest version
/*
 * Copyright 2019 Amazon.com, Inc. or its affiliates. All Rights Reserved.
 *
 * Licensed under the Apache License, Version 2.0 (the "License"). You may not use this file except in compliance
 * with the License. A copy of the License is located at
 *
 * http://aws.amazon.com/apache2.0/
 *
 * or in the "license" file accompanying this file. This file is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES
 * OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions
 * and limitations under the License.
 */
package ai.djl.nn.recurrent;

import ai.djl.Device;
import ai.djl.ndarray.NDArray;
import ai.djl.ndarray.NDList;
import ai.djl.ndarray.internal.NDArrayEx;
import ai.djl.ndarray.types.Shape;
import ai.djl.nn.Block;
import ai.djl.nn.Parameter;
import ai.djl.training.ParameterStore;
import ai.djl.util.PairList;
import ai.djl.util.Preconditions;

/**
 * {@code LSTM} is an implementation of recurrent neural networks which applies Long Short-Term
 * Memory recurrent layer to input.
 *
 * 

Reference paper - LONG SHORT-TERM MEMORY - Hochreiter, 1997. * http://www.bioinf.jku.at/publications/older/2604.pdf * *

The LSTM operator is formulated as below: * *

$$ \begin{split}\begin{array}{ll} i_t = \mathrm{sigmoid}(W_{ii} x_t + b_{ii} + W_{hi} * h_{(t-1)} + b_{hi}) \\ f_t = \mathrm{sigmoid}(W_{if} x_t + b_{if} + W_{hf} h_{(t-1)} + b_{hf}) \\ * g_t = \tanh(W_{ig} x_t + b_{ig} + W_{hc} h_{(t-1)} + b_{hg}) \\ o_t = \mathrm{sigmoid}(W_{io} x_t * + b_{io} + W_{ho} h_{(t-1)} + b_{ho}) \\ c_t = f_t * c_{(t-1)} + i_t * g_t \\ h_t = o_t * * \tanh(c_t) \end{array}\end{split} $$ */ public class LSTM extends RecurrentBlock { /** * Creates an LSTM block. * * @param builder the builder used to create the RNN block */ LSTM(Builder builder) { super(builder); gates = 4; } /** {@inheritDoc} */ @Override protected NDList forwardInternal( ParameterStore parameterStore, NDList inputs, boolean training, PairList params) { NDArrayEx ex = inputs.head().getNDArrayInternal(); Device device = inputs.head().getDevice(); NDList rnnParams = new NDList(); for (Parameter parameter : parameters.values()) { rnnParams.add(parameterStore.getValue(parameter, device, training)); } NDArray input = inputs.head(); if (inputs.size() == 1) { int batchIndex = batchFirst ? 0 : 1; Shape stateShape = new Shape( (long) numLayers * getNumDirections(), input.size(batchIndex), stateSize); // hidden state inputs.add(input.getManager().zeros(stateShape)); // cell inputs.add(input.getManager().zeros(stateShape)); } NDList outputs = ex.lstm( input, new NDList(inputs.get(1), inputs.get(2)), rnnParams, hasBiases, numLayers, dropRate, training, bidirectional, batchFirst); if (returnState) { return outputs; } outputs.stream().skip(1).forEach(NDArray::close); return new NDList(outputs.get(0)); } /** * Creates a builder to build a {@link LSTM}. * * @return a new builder */ public static Builder builder() { return new Builder(); } /** The Builder to construct a {@link LSTM} type of {@link Block}. */ public static final class Builder extends BaseBuilder { /** {@inheritDoc} */ @Override protected Builder self() { return this; } /** * Builds a {@link LSTM} block. * * @return the {@link LSTM} block */ public LSTM build() { Preconditions.checkArgument( stateSize > 0 && numLayers > 0, "Must set stateSize and numStackedLayers"); return new LSTM(this); } } }





© 2015 - 2024 Weber Informatics LLC | Privacy Policy