All Downloads are FREE. Search and download functionalities are using the official Maven repository.

ai.djl.nn.recurrent.RecurrentBlock Maven / Gradle / Ivy

There is a newer version: 0.31.1
Show newest version
/*
 * Copyright 2019 Amazon.com, Inc. or its affiliates. All Rights Reserved.
 *
 * Licensed under the Apache License, Version 2.0 (the "License"). You may not use this file except in compliance
 * with the License. A copy of the License is located at
 *
 * http://aws.amazon.com/apache2.0/
 *
 * or in the "license" file accompanying this file. This file is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES
 * OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions
 * and limitations under the License.
 */
package ai.djl.nn.recurrent;

import ai.djl.MalformedModelException;
import ai.djl.ndarray.types.LayoutType;
import ai.djl.ndarray.types.Shape;
import ai.djl.nn.AbstractBlock;
import ai.djl.nn.Block;
import ai.djl.nn.Parameter;
import ai.djl.nn.ParameterList;
import ai.djl.util.Pair;
import java.io.DataInputStream;
import java.io.IOException;

/**
 * {@code RecurrentBlock} is an abstract implementation of recurrent neural networks.
 *
 * 

Recurrent neural networks are neural networks with hidden states. They are very popular for * natural language processing tasks, and other tasks which involve sequential data. * *

This [article](http://karpathy.github.io/2015/05/21/rnn-effectiveness/) written by Andrej * Karpathy provides a detailed explanation of recurrent neural networks. * *

Currently, vanilla RNN, LSTM and GRU are implemented, with both multi-layer and bidirectional * support. */ public abstract class RecurrentBlock extends AbstractBlock { private static final byte VERSION = 2; private static final LayoutType[] EXPECTED_LAYOUT = { LayoutType.BATCH, LayoutType.TIME, LayoutType.CHANNEL }; protected long stateSize; protected float dropRate; protected int numLayers; protected int gates; protected boolean batchFirst; protected boolean hasBiases; protected boolean bidirectional; protected boolean returnState; /** * Creates a {@code RecurrentBlock} object. * * @param builder the {@code Builder} that has the necessary configurations */ public RecurrentBlock(BaseBuilder builder) { super(VERSION); stateSize = builder.stateSize; dropRate = builder.dropRate; numLayers = builder.numLayers; batchFirst = builder.batchFirst; hasBiases = builder.hasBiases; bidirectional = builder.bidirectional; returnState = builder.returnState; Parameter.Type[] parameterTypes = {Parameter.Type.WEIGHT, Parameter.Type.BIAS}; String[] directions = {"l"}; if (builder.bidirectional) { directions = new String[] {"l", "r"}; } String[] gateStrings = {"i2h", "h2h"}; for (int i = 0; i < numLayers; i++) { for (Parameter.Type parameterType : parameterTypes) { for (String direction : directions) { for (String gateString : gateStrings) { String name = direction + '_' + i + '_' + gateString + '_' + parameterType.name(); addParameter( Parameter.builder().setName(name).setType(parameterType).build()); } } } } } /** {@inheritDoc} */ @Override public Shape[] getOutputShapes(Shape[] inputs) { Shape inputShape = inputs[0]; Shape outputShape = new Shape(inputShape.get(0), inputShape.get(1), stateSize * getNumDirections()); if (!returnState) { return new Shape[] { outputShape, }; } return new Shape[] { outputShape, new Shape( (long) numLayers * getNumDirections(), inputShape.get((batchFirst) ? 0 : 1), stateSize) }; } /** {@inheritDoc} */ @Override protected void beforeInitialize(Shape... inputShapes) { super.beforeInitialize(inputShapes); Block.validateLayout(EXPECTED_LAYOUT, inputShapes[0].getLayout()); } /** {@inheritDoc} */ @Override public void prepare(Shape[] inputs) { Shape inputShape = inputs[0]; ParameterList parameters = getDirectParameters(); for (Pair pair : parameters) { String name = pair.getKey(); Parameter parameter = pair.getValue(); int layer = Integer.parseInt(name.split("_")[1]); long inputSize = inputShape.get(2); if (layer > 0) { inputSize = stateSize * getNumDirections(); } if (name.contains("BIAS")) { parameter.setShape(new Shape(gates * stateSize)); } else if (name.contains("i2h")) { parameter.setShape(new Shape(gates * stateSize, inputSize)); } else if (name.contains("h2h")) { parameter.setShape(new Shape(gates * stateSize, stateSize)); } else { throw new IllegalArgumentException("Invalid parameter name"); } } } /** {@inheritDoc} */ @Override public void loadMetadata(byte version, DataInputStream is) throws IOException, MalformedModelException { if (version == VERSION) { readInputShapes(is); } else if (version != 1) { throw new MalformedModelException("Unsupported encoding version: " + version); } } protected int getNumDirections() { return bidirectional ? 2 : 1; } /** The Builder to construct a {@link RecurrentBlock} type of {@link ai.djl.nn.Block}. */ @SuppressWarnings("rawtypes") public abstract static class BaseBuilder { protected float dropRate; protected long stateSize; protected int numLayers; // set it true by default for usability protected boolean batchFirst = true; protected boolean hasBiases = true; protected boolean bidirectional; protected boolean returnState; protected RNN.Activation activation; /** * Sets the drop rate of the dropout on the outputs of each RNN layer, except the last * layer. * * @param dropRate the drop rate of the dropout * @return this Builder */ public T optDropRate(float dropRate) { this.dropRate = dropRate; return self(); } /** * Sets the Required size of the state for each layer. * * @param stateSize the size of the state for each layer * @return this Builder */ public T setStateSize(int stateSize) { this.stateSize = stateSize; return self(); } /** * Sets the Required number of stacked layers. * * @param numLayers the number of stacked layers * @return this Builder */ public T setNumLayers(int numLayers) { this.numLayers = numLayers; return self(); } /** * Sets the optional parameter that indicates whether to use bidirectional recurrent layers. * * @param useBidirectional whether to use bidirectional recurrent layers * @return this Builder */ public T optBidirectional(boolean useBidirectional) { this.bidirectional = useBidirectional; return self(); } /** * Sets the optional batchFirst flag that indicates whether the input is batch major or not. * The default value is true. * * @param batchFirst whether the input is batch major or not * @return this Builder */ public T optBatchFirst(boolean batchFirst) { this.batchFirst = batchFirst; return self(); } /** * Sets the optional biases flag that indicates whether to use biases or not. * * @param hasBiases whether to use biases or not * @return this Builder */ public T optHasBiases(boolean hasBiases) { this.hasBiases = hasBiases; return self(); } /** * Sets the optional flag that indicates whether to return state or not. This is typically * useful when you use RecurrentBlock in Sequential block. The default value is false. * * @param returnState whether to return state or not * @return this Builder */ public T optReturnState(boolean returnState) { this.returnState = returnState; return self(); } protected abstract T self(); } }





© 2015 - 2024 Weber Informatics LLC | Privacy Policy