All Downloads are FREE. Search and download functionalities are using the official Maven repository.

ai.djl.training.dataset.DataIterable Maven / Gradle / Ivy

There is a newer version: 0.30.0
Show newest version
/*
 * Copyright 2019 Amazon.com, Inc. or its affiliates. All Rights Reserved.
 *
 * Licensed under the Apache License, Version 2.0 (the "License"). You may not use this file except in compliance
 * with the License. A copy of the License is located at
 *
 * http://aws.amazon.com/apache2.0/
 *
 * or in the "license" file accompanying this file. This file is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES
 * OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions
 * and limitations under the License.
 */
package ai.djl.training.dataset;

import ai.djl.Device;
import ai.djl.ndarray.NDList;
import ai.djl.ndarray.NDManager;
import ai.djl.translate.Batchifier;
import ai.djl.translate.Pipeline;
import java.io.IOException;
import java.util.Arrays;
import java.util.Iterator;
import java.util.LinkedList;
import java.util.List;
import java.util.Queue;
import java.util.concurrent.Callable;
import java.util.concurrent.ExecutionException;
import java.util.concurrent.ExecutorService;
import java.util.concurrent.Future;
import java.util.concurrent.atomic.AtomicInteger;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;

/**
 * DataIterable is a data loader that combines {@link Dataset}, {@link Batchifier}, {@link
 * Pipeline}, and {@link Sampler} to provide an iterable over the given {@link RandomAccessDataset}.
 *
 * 

We don't recommended using DataIterable directly. Instead use {@link RandomAccessDataset} * combined with {@link ai.djl.training.Trainer} to iterate over the {@link RandomAccessDataset}} */ public class DataIterable implements Iterable, Iterator { private static final Logger logger = LoggerFactory.getLogger(DataIterable.class); private RandomAccessDataset dataset; private NDManager manager; private Batchifier dataBatchifier; private Batchifier labelBatchifier; private Pipeline pipeline; private Pipeline targetPipeline; private ExecutorService executor; private Device device; private Iterator> sample; // for multithreading private Queue> queue; private AtomicInteger progressCounter; private boolean autoClose; /** * Creates a new instance of {@code DataIterable} with the given parameters. * * @param dataset the dataset to iterate on * @param manager the manager to create the arrays * @param sampler a sampler to sample data with * @param dataBatchifier a batchifier for data * @param labelBatchifier a batchifier for labels * @param pipeline the pipeline of transforms to apply on the data * @param targetPipeline the pipeline of transforms to apply on the labels * @param executor an {@link ExecutorService} * @param preFetchNumber the number of samples to prefetch * @param device the {@link Device} */ public DataIterable( RandomAccessDataset dataset, NDManager manager, Sampler sampler, Batchifier dataBatchifier, Batchifier labelBatchifier, Pipeline pipeline, Pipeline targetPipeline, ExecutorService executor, int preFetchNumber, Device device) { this.dataset = dataset; this.manager = manager.newSubManager(); this.manager.setName("dataIter"); this.dataBatchifier = dataBatchifier; this.labelBatchifier = labelBatchifier; this.pipeline = pipeline; this.targetPipeline = targetPipeline; this.executor = executor; this.device = device; progressCounter = new AtomicInteger(0); String close = System.getProperty("ai.djl.dataiterator.autoclose", "true"); autoClose = Boolean.parseBoolean(close); sample = sampler.sample(dataset); if (executor != null) { queue = new LinkedList<>(); // prefetch for (int i = 0; i < preFetchNumber; i++) { preFetch(); } } } /** {@inheritDoc} */ @Override public Iterator iterator() { return this; } /** {@inheritDoc} */ @Override public boolean hasNext() { if (executor != null) { if (queue.isEmpty()) { if (autoClose) { manager.close(); } return false; } return true; } if (!sample.hasNext()) { if (autoClose) { manager.close(); } return false; } return true; } /** {@inheritDoc} */ @Override public Batch next() { if (executor == null) { // single thread data loading with blocking fetch List indices = sample.next(); try { int progress = progressCounter.addAndGet(indices.size()); return fetch(indices, progress); } catch (IOException e) { logger.error(e.getMessage()); throw new IllegalStateException("Data loading failed", e); } } else { // multithreading data loading with async fetch preFetch(); Future future = queue.poll(); try { return future.get(); } catch (InterruptedException | ExecutionException e) { logger.error(e.getMessage()); throw new IllegalStateException("Data loading failed", e); } } } private Batch fetch(List indices, int progress) throws IOException { NDManager subManager = manager.newSubManager(); subManager.setName("dataIter fetch"); int batchSize = indices.size(); NDList[] data = new NDList[batchSize]; NDList[] labels = new NDList[batchSize]; for (int i = 0; i < batchSize; i++) { Record record = dataset.get(subManager, indices.get(i)); data[i] = record.getData(); // apply transform if (pipeline != null) { data[i] = pipeline.transform(data[i]); } labels[i] = record.getLabels(); } NDList batchData = dataBatchifier.batchify(data); NDList batchLabels = labelBatchifier.batchify(labels); Arrays.stream(data).forEach(NDList::close); Arrays.stream(labels).forEach(NDList::close); // apply label transform if (targetPipeline != null) { batchLabels = targetPipeline.transform(batchLabels); } // pin to a specific device if (device != null) { batchData = batchData.toDevice(device, false); batchLabels = batchLabels.toDevice(device, false); } return new Batch( subManager, batchData, batchLabels, batchSize, dataBatchifier, labelBatchifier, progress, dataset.size()); } private void preFetch() { if (!sample.hasNext()) { return; } List indices = sample.next(); Callable task = new PreFetchCallable(indices); Future result = executor.submit(task); queue.offer(result); } class PreFetchCallable implements Callable { private List indices; private int progress; public PreFetchCallable(List indices) { this.indices = indices; progress = progressCounter.getAndAdd(indices.size()); } /** {@inheritDoc} */ @Override public Batch call() throws IOException { return fetch(indices, progress); } } }





© 2015 - 2024 Weber Informatics LLC | Privacy Policy