ai.djl.training.evaluator.Accuracy Maven / Gradle / Ivy
/*
* Copyright 2020 Amazon.com, Inc. or its affiliates. All Rights Reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License"). You may not use this file except in compliance
* with the License. A copy of the License is located at
*
* http://aws.amazon.com/apache2.0/
*
* or in the "license" file accompanying this file. This file is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES
* OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions
* and limitations under the License.
*/
package ai.djl.training.evaluator;
import ai.djl.ndarray.NDArray;
import ai.djl.ndarray.NDList;
import ai.djl.ndarray.types.DataType;
import ai.djl.util.Pair;
/** {@link Accuracy} is the {@link AbstractAccuracy} with multiple classes. */
public class Accuracy extends AbstractAccuracy {
/**
* Creates a multiclass accuracy evaluator that computes accuracy across axis 1 along the 0th
* index.
*/
public Accuracy() {
this("Accuracy", 0, 1);
}
/**
* Creates a multiclass accuracy evaluator that computes accuracy across axis 1 along given
* index.
*
* @param name the name of the evaluator, default is "Accuracy"
* @param index the index of the NDArray in labels to compute accuracy for
*/
public Accuracy(String name, int index) {
super(name, index);
}
/**
* Creates a multiclass accuracy evaluator.
*
* @param name the name of the evaluator, default is "Accuracy"
* @param index the index of the NDArray in labels to compute accuracy for
* @param axis the axis that represent classes in prediction, default 1
*/
public Accuracy(String name, int index, int axis) {
super(name, index, axis);
}
/** {@inheritDoc} */
@Override
protected Pair accuracyHelper(NDList labels, NDList predictions) {
NDArray label = labels.get(index);
NDArray prediction = predictions.get(index);
checkLabelShapes(label, prediction);
NDArray predictionReduced;
if (!label.getShape().equals(prediction.getShape())) {
// Multi-class, sparse label
predictionReduced = prediction.argMax(axis);
predictionReduced = predictionReduced.reshape(label.getShape());
} else {
// Multi-class, one-hot label
predictionReduced = prediction;
}
// result of sum is int64 now
long total = label.size();
try (NDArray nd = label.toType(DataType.INT64, true)) {
NDArray correct = predictionReduced.toType(DataType.INT64, false).eq(nd).countNonzero();
return new Pair<>(total, correct);
}
}
}
© 2015 - 2024 Weber Informatics LLC | Privacy Policy