All Downloads are FREE. Search and download functionalities are using the official Maven repository.

ai.djl.training.evaluator.TopKAccuracy Maven / Gradle / Ivy

There is a newer version: 0.30.0
Show newest version
/*
 * Copyright 2019 Amazon.com, Inc. or its affiliates. All Rights Reserved.
 *
 * Licensed under the Apache License, Version 2.0 (the "License"). You may not use this file except in compliance
 * with the License. A copy of the License is located at
 *
 * http://aws.amazon.com/apache2.0/
 *
 * or in the "license" file accompanying this file. This file is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES
 * OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions
 * and limitations under the License.
 */
package ai.djl.training.evaluator;

import ai.djl.ndarray.NDArray;
import ai.djl.ndarray.NDArrays;
import ai.djl.ndarray.NDList;
import ai.djl.ndarray.types.DataType;
import ai.djl.util.Pair;
import java.util.stream.IntStream;

/**
 * {@code TopKAccuracy} is an {@link Evaluator} that computes the accuracy of the top k predictions.
 *
 * 

{@code TopKAccuracy} differs from {@link AbstractAccuracy} in that it considers the prediction * to be `True` as long as the ground truth label is in the top K predicated labels. If `top_k = 1`, * then {@code TopKAccuracy} is identical to {@code Accuracy}. */ public class TopKAccuracy extends AbstractAccuracy { private int topK; /** * Creates a {@code TopKAccuracy} instance. * * @param name the accuracy name, default "Top_K_Accuracy" * @param index the index of the {@link NDArray} in labels to compute topK accuracy for * @param topK the value of K */ public TopKAccuracy(String name, int index, int topK) { super(name, index); if (topK > 1) { this.topK = topK; } else { throw new IllegalArgumentException("Please use TopKAccuracy with topK more than 1"); } } /** * Creates an instance of {@code TopKAccuracy} evaluator that computes topK accuracy across axis * 1 along the given index. * * @param index the index of the {@link NDArray} in labels to compute topK accuracy for * @param topK the value of K */ public TopKAccuracy(int index, int topK) { this("Top_" + topK + "_Accuracy", index, topK); } /** * Creates an instance of {@code TopKAccuracy} evaluator that computes topK accuracy across axis * 1 along the 0th index. * * @param topK the value of K */ public TopKAccuracy(int topK) { this("Top_" + topK + "_Accuracy", 0, topK); } /** {@inheritDoc} */ @Override protected Pair accuracyHelper(NDList labels, NDList predictions) { NDArray label = labels.get(index); NDArray prediction = predictions.get(index); // number of labels and predictions should be the same checkLabelShapes(label, prediction); // ascending by default NDArray topKPrediction = prediction.argSort(axis).toType(DataType.INT64, false); int numDims = topKPrediction.getShape().dimension(); NDArray numCorrect; if (numDims == 1) { numCorrect = topKPrediction.flatten().eq(label.flatten()).countNonzero(); } else if (numDims == 2) { int numClasses = (int) topKPrediction.getShape().get(1); topK = Math.min(topK, numClasses); numCorrect = NDArrays.add( IntStream.range(0, topK) .mapToObj( j -> { // get from last index as argSort is ascending NDArray jPrediction = topKPrediction.get( ":, {}", numClasses - j - 1); return jPrediction .flatten() .eq( label.flatten() .toType( DataType.INT64, false)) .countNonzero(); }) .toArray(NDArray[]::new)); } else { throw new IllegalArgumentException("Prediction should be less than 2 dimensions"); } long total = label.getShape().get(0); return new Pair<>(total, numCorrect); } }





© 2015 - 2024 Weber Informatics LLC | Privacy Policy