ai.djl.training.optimizer.Adadelta Maven / Gradle / Ivy
/*
* Copyright 2019 Amazon.com, Inc. or its affiliates. All Rights Reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License"). You may not use this file except in compliance
* with the License. A copy of the License is located at
*
* http://aws.amazon.com/apache2.0/
*
* or in the "license" file accompanying this file. This file is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES
* OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions
* and limitations under the License.
*/
package ai.djl.training.optimizer;
import ai.djl.Device;
import ai.djl.ndarray.NDArray;
import ai.djl.ndarray.NDList;
import ai.djl.ndarray.internal.NDArrayEx;
import java.util.Map;
import java.util.concurrent.ConcurrentHashMap;
/**
* {@code Adadelta} is an Adadelta {@code Optimizer}.
*
* @see The D2L chapter on
* Adadelta
*/
public class Adadelta extends Optimizer {
private float rho;
private float epsilon;
private Map> accumG;
private Map> accumDelta;
/**
* Creates a new instance of {@code Adadelta}.
*
* @param builder the builder to create a new instance of {@link Adadelta}
*/
protected Adadelta(Builder builder) {
super(builder);
rho = builder.rho;
epsilon = builder.epsilon;
accumG = new ConcurrentHashMap<>();
accumDelta = new ConcurrentHashMap<>();
}
/** {@inheritDoc} */
@Override
public void update(String parameterId, NDArray weight, NDArray grad) {
float weightDecay = getWeightDecay();
NDList inputs =
new NDList(
weight,
grad,
withDefaultState(
accumG, parameterId, weight.getDevice(), k -> weight.zerosLike()),
withDefaultState(
accumDelta,
parameterId,
weight.getDevice(),
k -> weight.zerosLike()));
NDList weights = new NDList(weight);
NDArrayEx ex = weight.getNDArrayInternal();
ex.adadeltaUpdate(inputs, weights, weightDecay, rescaleGrad, clipGrad, rho, epsilon);
}
/** The Builder to construct an {@link Adadelta} object. */
public static final class Builder extends OptimizerBuilder {
private float rho = 0.9f;
private float epsilon = 1e-8f;
Builder() {}
/** {@inheritDoc} */
@Override
protected Builder self() {
return this;
}
/**
* Sets the rho for {@link Adadelta}.
*
* @param rho the value of rho
* @return this {@code Builder}
*/
public Builder optRho(float rho) {
this.rho = rho;
return this;
}
/**
* Sets \(epsilon\) - a small quantity for numerical stability.
*
* @param epsilon a small quantity for numerical stability
* @return this {@code Builder}
*/
public Adadelta.Builder optEpsilon(float epsilon) {
this.epsilon = epsilon;
return this;
}
/**
* Builds a {@link Adadelta} block.
*
* @return the {@link Adadelta} block
*/
public Adadelta build() {
return new Adadelta(this);
}
}
}
© 2015 - 2024 Weber Informatics LLC | Privacy Policy