All Downloads are FREE. Search and download functionalities are using the official Maven repository.

ai.djl.modality.cv.util.NDImageUtils Maven / Gradle / Ivy

There is a newer version: 0.30.0
Show newest version
/*
 * Copyright 2019 Amazon.com, Inc. or its affiliates. All Rights Reserved.
 *
 * Licensed under the Apache License, Version 2.0 (the "License"). You may not use this file except in compliance
 * with the License. A copy of the License is located at
 *
 * http://aws.amazon.com/apache2.0/
 *
 * or in the "license" file accompanying this file. This file is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES
 * OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions
 * and limitations under the License.
 */
package ai.djl.modality.cv.util;

import ai.djl.modality.cv.Image;
import ai.djl.ndarray.NDArray;
import ai.djl.ndarray.types.Shape;
import ai.djl.util.RandomUtils;

/**
 * {@code NDImageUtils} is an image processing utility to load, reshape, and convert images using
 * {@link NDArray} images.
 */
public final class NDImageUtils {

    private NDImageUtils() {}

    /**
     * Resizes an image to the given width and height.
     *
     * @param image the image to resize
     * @param size the desired size
     * @return the resized NDArray
     */
    public static NDArray resize(NDArray image, int size) {
        return resize(image, size, size, Image.Interpolation.BILINEAR);
    }

    /**
     * Resizes an image to the given width and height.
     *
     * @param image the image to resize
     * @param width the desired width
     * @param height the desired height
     * @return the resized NDArray
     */
    public static NDArray resize(NDArray image, int width, int height) {
        return resize(image, width, height, Image.Interpolation.BILINEAR);
    }

    /**
     * Resizes an image to the given width and height with given interpolation.
     *
     * @param image the image to resize
     * @param width the desired width
     * @param height the desired height
     * @param interpolation the desired interpolation
     * @return the resized NDArray
     */
    public static NDArray resize(
            NDArray image, int width, int height, Image.Interpolation interpolation) {
        return image.getNDArrayInternal().resize(width, height, interpolation.ordinal());
    }

    /**
     * Rotate an image NDArray counter-clockwise 90 degree.
     *
     * @param image the image to rotate
     * @param times the image to rotate
     * @return the rotated Image
     */
    public static NDArray rotate90(NDArray image, int times) {
        Shape shape = image.getShape();
        int batchDim = shape.dimension() == 4 ? 1 : 0;
        if (isCHW(shape)) {
            return image.rotate90(times, new int[] {1 + batchDim, 2 + batchDim});
        } else {
            return image.rotate90(times, new int[] {batchDim, 1 + batchDim});
        }
    }

    /**
     * Normalizes an image NDArray of shape CHW or NCHW with a single mean and standard deviation to
     * apply to all channels. TensorFlow enforce HWC instead.
     *
     * @param input the image to normalize
     * @param mean the mean to normalize with (for all channels)
     * @param std the standard deviation to normalize with (for all channels)
     * @return the normalized NDArray
     * @see NDImageUtils#normalize(NDArray, float[], float[])
     */
    public static NDArray normalize(NDArray input, float mean, float std) {
        return normalize(input, new float[] {mean, mean, mean}, new float[] {std, std, std});
    }

    /**
     * Normalizes an image NDArray of shape CHW or NCHW with mean and standard deviation. TensorFlow
     * enforce HWC instead.
     *
     * 

Given mean {@code (m1, ..., mn)} and standard deviation {@code (s1, ..., sn} for {@code n} * channels, this transform normalizes each channel of the input tensor with: {@code output[i] = * (input[i] - m1) / (s1)}. * * @param input the image to normalize * @param mean the mean to normalize with for each channel * @param std the standard deviation to normalize with for each channel * @return the normalized NDArray */ public static NDArray normalize(NDArray input, float[] mean, float[] std) { boolean chw = isCHW(input.getShape()); boolean tf = "TensorFlow".equals(input.getManager().getEngine().getEngineName()); if ((chw && tf) || (!chw && !tf)) { throw new IllegalArgumentException( "normalize requires CHW format. TensorFlow requires HWC"); } return input.getNDArrayInternal().normalize(mean, std); } /** * Converts an image NDArray from preprocessing format to Neural Network format. * *

Converts an image NDArray of shape HWC in the range {@code [0, 255]} to a {@link * ai.djl.ndarray.types.DataType#FLOAT32} tensor NDArray of shape CHW in the range {@code [0, * 1]}. * * @param image the image to convert * @return the converted image */ public static NDArray toTensor(NDArray image) { return image.getNDArrayInternal().toTensor(); } /** * Crops an image to a square of size {@code min(width, height)}. * * @param image the image to crop * @return the cropped image * @see NDImageUtils#centerCrop(NDArray, int, int) */ public static NDArray centerCrop(NDArray image) { Shape shape = image.getShape(); int w = (int) shape.get(1); int h = (int) shape.get(0); if (w == h) { return image; } if (w > h) { return centerCrop(image, h, h); } return centerCrop(image, w, w); } /** * Crops an image to a given width and height from the center of the image. * * @param image the image to crop * @param width the desired width of the cropped image * @param height the desired height of the cropped image * @return the cropped image */ public static NDArray centerCrop(NDArray image, int width, int height) { Shape shape = image.getShape(); if (isCHW(image.getShape()) || shape.dimension() == 4) { throw new IllegalArgumentException("CenterCrop only support for HWC image format"); } int w = (int) shape.get(1); int h = (int) shape.get(0); int x; int y; int dw = (w - width) / 2; int dh = (h - height) / 2; if (dw > 0) { x = dw; w = width; } else { x = 0; } if (dh > 0) { y = dh; h = height; } else { y = 0; } return crop(image, x, y, w, h); } /** * Crops an image with a given location and size. * * @param image the image to crop * @param x the x coordinate of the top-left corner of the crop * @param y the y coordinate of the top-left corner of the crop * @param width the width of the cropped image * @param height the height of the cropped image * @return the cropped image */ public static NDArray crop(NDArray image, int x, int y, int width, int height) { return image.getNDArrayInternal().crop(x, y, width, height); } /** * Randomly flip the input image left to right with a probability of 0.5. * * @param image the image with HWC format * @return the flipped image */ public static NDArray randomFlipLeftRight(NDArray image) { return image.getNDArrayInternal().randomFlipLeftRight(); } /** * Randomly flip the input image top to bottom with a probability of 0.5. * * @param image the image with HWC format * @return the flipped image */ public static NDArray randomFlipTopBottom(NDArray image) { return image.getNDArrayInternal().randomFlipTopBottom(); } /** * Crop the input image with random scale and aspect ratio. * * @param image the image with HWC format * @param width the output width of the image * @param height the output height of the image * @param minAreaScale minimum targetArea/srcArea value * @param maxAreaScale maximum targetArea/srcArea value * @param minAspectRatio minimum aspect ratio * @param maxAspectRatio maximum aspect ratio * @return the cropped image */ public static NDArray randomResizedCrop( NDArray image, int width, int height, double minAreaScale, double maxAreaScale, double minAspectRatio, double maxAspectRatio) { Shape shape = image.getShape(); if (isCHW(image.getShape()) || shape.dimension() == 4) { throw new IllegalArgumentException( "randomResizedCrop only support for HWC image format"); } int h = (int) shape.get(0); int w = (int) shape.get(1); int srcArea = h * w; double targetArea = minAreaScale * srcArea + (maxAreaScale - minAreaScale) * srcArea * RandomUtils.nextFloat(); // get ratio from maximum achievable h and w double minRatio = (targetArea / h) / h; double maxRatio = w / (targetArea / w); double[] intersectRatio = { Math.max(minRatio, minAspectRatio), Math.min(maxRatio, maxAspectRatio) }; if (intersectRatio[1] < intersectRatio[0]) { return centerCrop(image, width, height); } // compute final area to crop float finalRatio = RandomUtils.nextFloat((float) intersectRatio[0], (float) intersectRatio[1]); int newWidth = (int) Math.round(Math.sqrt(targetArea * finalRatio)); int newHeight = (int) (newWidth / finalRatio); // num in nextInt(num) should be greater than 0 // otherwise it throws IllegalArgumentException: bound must be positive int x = w == newWidth ? 0 : RandomUtils.nextInt(w - newWidth); int y = h == newHeight ? 0 : RandomUtils.nextInt(h - newHeight); try (NDArray cropped = crop(image, x, y, newWidth, newHeight)) { return resize(cropped, width, height); } } /** * Randomly jitters image brightness with a factor chosen from [max(0, 1 - brightness), 1 + * brightness]. * * @param image the image with HWC format * @param brightness the brightness factor from 0 to 1 * @return the transformed image */ public static NDArray randomBrightness(NDArray image, float brightness) { return image.getNDArrayInternal().randomBrightness(brightness); } /** * Randomly jitters image hue with a factor chosen from [max(0, 1 - hue), 1 + hue]. * * @param image the image with HWC format * @param hue the hue factor from 0 to 1 * @return the transformed image */ public static NDArray randomHue(NDArray image, float hue) { return image.getNDArrayInternal().randomHue(hue); } /** * Randomly jitters the brightness, contrast, saturation, and hue of an image. * * @param image the image with HWC format * @param brightness the brightness factor from 0 to 1 * @param contrast the contrast factor from 0 to 1 * @param saturation the saturation factor from 0 to 1 * @param hue the hue factor from 0 to 1 * @return the transformed image */ public static NDArray randomColorJitter( NDArray image, float brightness, float contrast, float saturation, float hue) { return image.getNDArrayInternal().randomColorJitter(brightness, contrast, saturation, hue); } /** * Check if the shape of the image follows CHW/NCHW. * * @param shape the shape of the image * @return true for (N)CHW, false for (N)HWC */ public static boolean isCHW(Shape shape) { if (shape.dimension() < 3) { throw new IllegalArgumentException( "Not a valid image shape, require at least three dimensions"); } if (shape.dimension() == 4) { shape = shape.slice(1); } if (shape.get(0) == 1 || shape.get(0) == 3) { return true; } else if (shape.get(2) == 1 || shape.get(2) == 3) { return false; } throw new IllegalArgumentException("Image is neither CHW nor HWC"); } }





© 2015 - 2024 Weber Informatics LLC | Privacy Policy