All Downloads are FREE. Search and download functionalities are using the official Maven repository.

ai.djl.nn.LambdaBlock Maven / Gradle / Ivy

There is a newer version: 0.30.0
Show newest version
/*
 * Copyright 2019 Amazon.com, Inc. or its affiliates. All Rights Reserved.
 *
 * Licensed under the Apache License, Version 2.0 (the "License"). You may not use this file except in compliance
 * with the License. A copy of the License is located at
 *
 * http://aws.amazon.com/apache2.0/
 *
 * or in the "license" file accompanying this file. This file is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES
 * OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions
 * and limitations under the License.
 */
package ai.djl.nn;

import ai.djl.MalformedModelException;
import ai.djl.ndarray.NDArray;
import ai.djl.ndarray.NDList;
import ai.djl.ndarray.NDManager;
import ai.djl.ndarray.types.DataType;
import ai.djl.ndarray.types.Shape;
import ai.djl.training.ParameterStore;
import ai.djl.util.PairList;

import java.io.DataInputStream;
import java.io.IOException;
import java.util.function.Function;

/**
 * {@code LambdaBlock} is a {@link Block} with no parameters or children.
 *
 * 

{@code LambdaBlock} allows converting any function that takes an {@code NDList} as input and * returns an {@code NDList} into a parameter-less and child-less {@link Block}. This can be useful * in converting activation functions, identity blocks, and more. For example, identity block can be * created as {@code new LambdaBlock(x -> x)}. */ public class LambdaBlock extends AbstractBlock { public static final String DEFAULT_NAME = "anonymous"; private static final byte VERSION = 2; private Function lambda; private String name; /** * Creates a LambdaBlock that can apply the specified function. * * @param lambda the function to apply */ public LambdaBlock(Function lambda) { this(lambda, DEFAULT_NAME); } /** * Creates a LambdaBlock that can apply the specified function. * * @param lambda the function to apply * @param name the function name */ public LambdaBlock(Function lambda, String name) { super(VERSION); this.lambda = lambda; this.name = name; } /** * Returns the lambda function name. * * @return the lambda function name */ public String getName() { return name; } /** * Creates a {@link LambdaBlock} for a singleton function. * * @param lambda a function accepting a singleton {@link NDList} and returning another singleton * {@link NDList} * @return a new {@link LambdaBlock} for the function */ public static LambdaBlock singleton(Function lambda) { return new LambdaBlock( arrays -> new NDList(lambda.apply(arrays.singletonOrThrow())), lambda.getClass().getSimpleName()); } /** * Creates a {@link LambdaBlock} for a singleton function. * * @param lambda a function accepting a singleton {@link NDList} and returning another singleton * {@link NDList} * @param name the function name * @return a new {@link LambdaBlock} for the function */ public static LambdaBlock singleton(Function lambda, String name) { return new LambdaBlock(arrays -> new NDList(lambda.apply(arrays.singletonOrThrow())), name); } /** {@inheritDoc} */ @Override protected NDList forwardInternal( ParameterStore parameterStore, NDList inputs, boolean training, PairList params) { return lambda.apply(inputs); } /** {@inheritDoc} */ @Override public Shape[] getOutputShapes(Shape[] inputShapes) { try (NDManager manager = NDManager.newBaseManager()) { NDList input = new NDList(inputShapes.length); for (Shape shape : inputShapes) { input.add(manager.zeros(shape)); } NDList output = lambda.apply(input); Shape[] outputShapes = new Shape[output.size()]; DataType[] dataTypes = new DataType[output.size()]; for (int i = 0; i < output.size(); ++i) { outputShapes[i] = output.get(i).getShape(); dataTypes[i] = output.get(i).getDataType(); } outputDataTypes = dataTypes; return outputShapes; } } /** {@inheritDoc} */ @Override public void loadParameters(NDManager manager, DataInputStream is) throws IOException, MalformedModelException { byte version = is.readByte(); if (version == VERSION) { readInputShapes(is); } else if (version != 1) { throw new MalformedModelException("Unsupported encoding version: " + version); } } }





© 2015 - 2024 Weber Informatics LLC | Privacy Policy