ai.djl.nn.convolutional.Deconvolution Maven / Gradle / Ivy
/*
* Copyright 2020 Amazon.com, Inc. or its affiliates. All Rights Reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License"). You may not use this file except in compliance
* with the License. A copy of the License is located at
*
* http://aws.amazon.com/apache2.0/
*
* or in the "license" file accompanying this file. This file is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES
* OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions
* and limitations under the License.
*/
package ai.djl.nn.convolutional;
import ai.djl.Device;
import ai.djl.MalformedModelException;
import ai.djl.ndarray.NDArray;
import ai.djl.ndarray.NDList;
import ai.djl.ndarray.types.LayoutType;
import ai.djl.ndarray.types.Shape;
import ai.djl.nn.AbstractBlock;
import ai.djl.nn.Block;
import ai.djl.nn.Parameter;
import ai.djl.training.ParameterStore;
import ai.djl.util.PairList;
import java.io.DataInputStream;
import java.io.IOException;
/**
* Transposed convolution, also named fractionally-strided convolution Dumoulin & Visin or deconvolution Long et al., 2015, serves this purpose.
*
* The need for transposed convolutions generally arises from the desire to use a transformation
* going in the opposite direction of a normal convolution, i.e., from something that has the shape
* of the output of some convolution to something that has the shape of its input while maintaining
* a connectivity pattern that is compatible with said convolution.
*
*
Current implementations of {@code Deconvolution} are {@link Conv1dTranspose} with input
* dimension of {@link LayoutType#WIDTH} and {@link Conv2dTranspose} with input dimension of {@link
* LayoutType#WIDTH} and {@link LayoutType#HEIGHT}. These implementations share the same core
* principal as a {@code Deconvolution} layer does, with the difference being the number of input
* dimension each operates on as denoted by {@code ConvXdTranspose} for {@code X} dimension(s).
*/
public abstract class Deconvolution extends AbstractBlock {
protected Shape kernelShape;
protected Shape stride;
protected Shape padding;
protected Shape outPadding;
protected Shape dilation;
protected int filters;
protected int groups;
protected boolean includeBias;
protected Parameter weight;
protected Parameter bias;
/**
* Creates a {@link Deconvolution} object.
*
* @param builder the {@code Builder} that has the necessary configurations
*/
public Deconvolution(DeconvolutionBuilder> builder) {
kernelShape = builder.kernelShape;
stride = builder.stride;
padding = builder.padding;
outPadding = builder.outPadding;
dilation = builder.dilation;
filters = builder.filters;
groups = builder.groups;
includeBias = builder.includeBias;
weight =
addParameter(
Parameter.builder()
.setName("weight")
.setType(Parameter.Type.WEIGHT)
.build());
if (includeBias) {
bias =
addParameter(
Parameter.builder()
.setName("bias")
.setType(Parameter.Type.BIAS)
.build());
}
}
/**
* Returns the expected layout of the input.
*
* @return the expected layout of the input
*/
protected abstract LayoutType[] getExpectedLayout();
/**
* Returns the string representing the layout of the input.
*
* @return the string representing the layout of the input
*/
protected abstract String getStringLayout();
/**
* Returns the number of dimensions of the input.
*
* @return the number of dimensions of the input
*/
protected abstract int numDimensions();
/** {@inheritDoc} */
@Override
protected NDList forwardInternal(
ParameterStore parameterStore,
NDList inputs,
boolean training,
PairList params) {
NDArray input = inputs.singletonOrThrow();
Device device = input.getDevice();
NDArray weightArr = parameterStore.getValue(weight, device, training);
NDArray biasArr = parameterStore.getValue(bias, device, training);
return deconvolution(
input, weightArr, biasArr, stride, padding, outPadding, dilation, groups);
}
/** {@inheritDoc} */
@Override
protected void beforeInitialize(Shape... inputShapes) {
super.beforeInitialize(inputShapes);
Block.validateLayout(getExpectedLayout(), inputShapes[0].getLayout());
}
/** {@inheritDoc} */
@Override
protected void prepare(Shape[] inputs) {
long inputChannel = inputs[0].get(1);
weight.setShape(new Shape(filters, inputChannel / groups).addAll(kernelShape));
if (bias != null) {
bias.setShape(new Shape(filters));
}
}
/** {@inheritDoc} */
@Override
public Shape[] getOutputShapes(Shape[] inputs) {
long[] shape = new long[numDimensions()];
shape[0] = inputs[0].get(0);
shape[1] = filters;
for (int i = 0; i < numDimensions() - 2; i++) {
shape[2 + i] =
(inputs[0].get(2 + i) - 1) * stride.get(i)
- 2 * padding.get(i)
+ dilation.get(i) * (kernelShape.get(i) - 1)
+ outPadding.get(i)
+ 1;
}
return new Shape[] {new Shape(shape)};
}
/** {@inheritDoc} */
@Override
public void loadMetadata(byte loadVersion, DataInputStream is)
throws IOException, MalformedModelException {
if (loadVersion == version) {
readInputShapes(is);
} else {
throw new MalformedModelException("Unsupported encoding version: " + loadVersion);
}
}
/**
* Applies N-D deconvolution over an input signal composed of several input planes.
*
* @param input the input {@code NDArray} of shape (batchSize, inputChannel, ...)
* @param weight filters {@code NDArray} of shape (outChannel, inputChannel/groups, ...)
* @param bias bias {@code NDArray} of shape (outChannel)
* @param stride the stride of the deconvolving kernel: Shape(w) or Shape(h, w)
* @param padding implicit paddings on both sides of the input: Shape(w) or Shape(h, w)
* @param outPadding Controls the amount of implicit zero-paddings on both sides of the output
* for output_padding number of points for each dimension. Shape(w) or Shape(h, w)
* @param dilation the spacing between kernel elements: Shape(w) or Shape(h, w)
* @param groups split input into groups: input channel(input.size(1)) should be divisible by
* the number of groups
* @return the output of the deconvolution operation
*/
static NDList deconvolution(
NDArray input,
NDArray weight,
NDArray bias,
Shape stride,
Shape padding,
Shape outPadding,
Shape dilation,
int groups) {
return input.getNDArrayInternal()
.deconvolution(input, weight, bias, stride, padding, outPadding, dilation, groups);
}
/**
* A builder that can build any {@code Deconvolution} block.
*
* @param the type of {@code Deconvolution} block to build
*/
@SuppressWarnings("rawtypes")
public abstract static class DeconvolutionBuilder {
protected Shape kernelShape;
protected Shape stride;
protected Shape padding;
protected Shape outPadding;
protected Shape dilation;
protected int filters;
protected int groups = 1;
protected boolean includeBias = true;
/**
* Sets the shape of the kernel.
*
* @param kernelShape the shape of the kernel
* @return this Builder
*/
public T setKernelShape(Shape kernelShape) {
this.kernelShape = kernelShape;
return self();
}
/**
* Sets the stride of the deconvolution. Defaults to 1 in each dimension.
*
* @param stride the shape of the stride
* @return this Builder
*/
public T optStride(Shape stride) {
this.stride = stride;
return self();
}
/**
* Sets the padding along each dimension. Defaults to 0 along each dimension.
*
* @param padding the shape of padding along each dimension
* @return this Builder
*/
public T optPadding(Shape padding) {
this.padding = padding;
return self();
}
/**
* Sets the out_padding along each dimension. Defaults to 0 along each dimension.
*
* @param outPadding the shape of out_padding along each dimension
* @return this Builder
*/
public T optOutPadding(Shape outPadding) {
this.outPadding = outPadding;
return self();
}
/**
* Sets the dilation along each dimension. Defaults to 1 along each dimension.
*
* @param dilate the shape of dilation along each dimension
* @return this Builder
*/
public T optDilation(Shape dilate) {
this.dilation = dilate;
return self();
}
/**
* Sets the Required number of filters.
*
* @param filters the number of deconvolution filters(channels)
* @return this Builder
*/
public T setFilters(int filters) {
this.filters = filters;
return self();
}
/**
* Sets the number of group partitions.
*
* @param groups the number of group partitions
* @return this Builder
*/
public T optGroups(int groups) {
this.groups = groups;
return self();
}
/**
* Sets the optional parameter of whether to include a bias vector. Includes bias by
* default.
*
* @param includeBias whether to use a bias vector parameter
* @return this Builder
*/
public T optBias(boolean includeBias) {
this.includeBias = includeBias;
return self();
}
/**
* Validates that the required arguments are set.
*
* @throws IllegalArgumentException if the required arguments are not set
*/
protected void validate() {
if (kernelShape == null || filters == 0) {
throw new IllegalArgumentException("Kernel and numFilters must be set");
}
}
protected abstract T self();
}
}