Many resources are needed to download a project. Please understand that we have to compensate our server costs. Thank you in advance. Project price only 1 $
You can buy this project and download/modify it how often you want.
/*
* Copyright 2022 Amazon.com, Inc. or its affiliates. All Rights Reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License"). You may not use this file except in compliance
* with the License. A copy of the License is located at
*
* http://aws.amazon.com/apache2.0/
*
* or in the "license" file accompanying this file. This file is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES
* OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions
* and limitations under the License.
*/
package ai.djl.training.dataset;
import ai.djl.Device;
import ai.djl.ndarray.NDList;
import ai.djl.ndarray.NDManager;
import ai.djl.translate.Batchifier;
import ai.djl.translate.Pipeline;
import java.io.IOException;
import java.util.List;
import java.util.concurrent.ExecutorService;
/**
* BulkDataIterable specializes DataIterable in using {@link ArrayDataset#getByRange(NDManager,
* long, long)} or {@link ArrayDataset#getByIndices(NDManager, long...)} to create {@link Batch}
* instances more efficiently.
*/
public class BulkDataIterable extends DataIterable {
/**
* Creates a new instance of {@code BulkDataIterable} with the given parameters.
*
* @param dataset the dataset to iterate on
* @param manager the manager to create the arrays
* @param sampler a sampler to sample data with
* @param dataBatchifier a batchifier for data
* @param labelBatchifier a batchifier for labels
* @param pipeline the pipeline of transforms to apply on the data
* @param targetPipeline the pipeline of transforms to apply on the labels
* @param executor an {@link ExecutorService}
* @param preFetchNumber the number of samples to prefetch
* @param device the {@link Device}
*/
public BulkDataIterable(
ArrayDataset dataset,
NDManager manager,
Sampler sampler,
Batchifier dataBatchifier,
Batchifier labelBatchifier,
Pipeline pipeline,
Pipeline targetPipeline,
ExecutorService executor,
int preFetchNumber,
Device device) {
super(
dataset,
manager,
sampler,
dataBatchifier,
labelBatchifier,
pipeline,
targetPipeline,
executor,
preFetchNumber,
device);
}
@Override
protected Batch fetch(List indices, int progress) throws IOException {
NDManager subManager = manager.newSubManager();
subManager.setName("dataIter fetch");
int batchSize = indices.size();
Batch raw;
if (isRange(indices)) {
long fromIndex = indices.get(0);
long toIndex = fromIndex + indices.size();
raw = ((ArrayDataset) dataset).getByRange(subManager, fromIndex, toIndex);
} else {
long[] indicesArr = indices.stream().mapToLong(Long::longValue).toArray();
raw = ((ArrayDataset) dataset).getByIndices(subManager, indicesArr);
}
NDList batchData = raw.getData();
// apply transform
if (pipeline != null) {
batchData = pipeline.transform(batchData);
}
NDList batchLabels = raw.getLabels();
// apply label transform
if (targetPipeline != null) {
batchLabels = targetPipeline.transform(batchLabels);
}
// pin to a specific device
if (device != null) {
batchData = batchData.toDevice(device, false);
batchLabels = batchLabels.toDevice(device, false);
}
return new Batch(
subManager,
batchData,
batchLabels,
batchSize,
dataBatchifier,
labelBatchifier,
progress,
dataset.size(),
indices);
}
/**
* Checks whether the given indices actually represents a range.
*
* @param indices the indices to examine
* @return whether the given indices are sorted in ascending order with no gap and has at least
* one element
*/
public static boolean isRange(List indices) {
if (indices.isEmpty()) {
return false;
}
long from = indices.get(0);
for (long index : indices) {
if (index != from++) {
return false;
}
}
return true;
}
}