All Downloads are FREE. Search and download functionalities are using the official Maven repository.

ai.djl.training.loss.SoftmaxCrossEntropyLoss Maven / Gradle / Ivy

There is a newer version: 0.30.0
Show newest version
/*
 * Copyright 2019 Amazon.com, Inc. or its affiliates. All Rights Reserved.
 *
 * Licensed under the Apache License, Version 2.0 (the "License"). You may not use this file except in compliance
 * with the License. A copy of the License is located at
 *
 * http://aws.amazon.com/apache2.0/
 *
 * or in the "license" file accompanying this file. This file is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES
 * OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions
 * and limitations under the License.
 */
package ai.djl.training.loss;

import ai.djl.ndarray.NDArray;
import ai.djl.ndarray.NDList;
import ai.djl.ndarray.index.NDIndex;

/**
 * {@code SoftmaxCrossEntropyLoss} is a type of {@link Loss} that calculates the softmax cross
 * entropy loss.
 *
 * 

If {@code sparse_label} is {@code true} (default), {@code label} should contain integer * category indicators. Then, \(L = -\sum_i \log p_{i, label_i}\). If {@code sparse_label} is {@code * false}, {@code label} should be one-hot class coding or probability distribution and its shape * should be the same as the shape of {@code prediction}. Then, \(L = -\sum_i \sum_j {label}_j \log * p_{ij}\). */ public class SoftmaxCrossEntropyLoss extends Loss { private float weight; private int classAxis; private boolean sparseLabel; private boolean fromLogit; /** Creates a new instance of {@code SoftmaxCrossEntropyLoss} with default parameters. */ public SoftmaxCrossEntropyLoss() { this("SoftmaxCrossEntropyLoss"); } /** * Creates a new instance of {@code SoftmaxCrossEntropyLoss} with default parameters. * * @param name the name of the loss */ public SoftmaxCrossEntropyLoss(String name) { // By default, fromLogit=true, means it takes the prediction before being // applied softmax. this(name, 1, -1, true, true); } /** * Creates a new instance of {@code SoftmaxCrossEntropyLoss} with the given parameters. * * @param name the name of the loss * @param weight the weight to apply on the loss value, default 1 * @param classAxis the axis that represents the class probabilities, default -1 * @param sparseLabel whether labels are rank-1 integer array of [batch_size] (true) or rank-2 * one-hot or probability distribution of shape [batch_size, n-class] (false), default true * @param fromLogit if true, the inputs are assumed to be the numbers before being applied with * softmax. Then logSoftmax will be applied to input, default true */ public SoftmaxCrossEntropyLoss( String name, float weight, int classAxis, boolean sparseLabel, boolean fromLogit) { super(name); this.weight = weight; this.classAxis = classAxis; this.sparseLabel = sparseLabel; this.fromLogit = fromLogit; } /** {@inheritDoc} */ @Override public NDArray evaluate(NDList label, NDList prediction) { NDArray pred = prediction.singletonOrThrow(); if (fromLogit) { pred = pred.logSoftmax(classAxis); } NDArray loss; NDArray lab = label.singletonOrThrow(); if (sparseLabel) { NDIndex pickIndex = new NDIndex() .addAllDim(Math.floorMod(classAxis, pred.getShape().dimension())) .addPickDim(lab); loss = pred.get(pickIndex).neg(); } else { lab = lab.reshape(pred.getShape()); loss = pred.mul(lab).neg().sum(new int[] {classAxis}, true); } if (weight != 1) { loss = loss.mul(weight); } return loss.mean(); } }





© 2015 - 2024 Weber Informatics LLC | Privacy Policy