ai.djl.modality.cv.translator.BigGANTranslator Maven / Gradle / Ivy
The newest version!
/*
* Copyright 2021 Amazon.com, Inc. or its affiliates. All Rights Reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License"). You may not use this file except in compliance
* with the License. A copy of the License is located at
*
* http://aws.amazon.com/apache2.0/
*
* or in the "license" file accompanying this file. This file is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES
* OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions
* and limitations under the License.
*/
package ai.djl.modality.cv.translator;
import ai.djl.modality.cv.Image;
import ai.djl.modality.cv.ImageFactory;
import ai.djl.ndarray.NDArray;
import ai.djl.ndarray.NDList;
import ai.djl.ndarray.NDManager;
import ai.djl.ndarray.types.Shape;
import ai.djl.translate.NoBatchifyTranslator;
import ai.djl.translate.TranslatorContext;
/** Built-in {@code Translator} that provides preprocessing and postprocessing for BigGAN. */
public final class BigGANTranslator implements NoBatchifyTranslator {
private static final int NUMBER_OF_CATEGORIES = 1000;
private static final int SEED_COLUMN_SIZE = 128;
private float truncation;
/**
* Constructs a translator for BigGAN.
*
* @param truncation value used to scale the normal seed for BigGAN
*/
public BigGANTranslator(float truncation) {
this.truncation = truncation;
}
/** {@inheritDoc} */
@Override
public Image[] processOutput(TranslatorContext ctx, NDList list) {
NDArray output = list.get(0).duplicate().addi(1).muli(128).clip(0, 255);
int sampleSize = (int) output.getShape().get(0);
Image[] images = new Image[sampleSize];
for (int i = 0; i < sampleSize; ++i) {
images[i] = ImageFactory.getInstance().fromNDArray(output.get(i));
}
return images;
}
/** {@inheritDoc} */
@Override
public NDList processInput(TranslatorContext ctx, int[] input) throws Exception {
NDManager manager = ctx.getNDManager();
NDArray classes = manager.create(input).oneHot(NUMBER_OF_CATEGORIES);
NDArray seed =
manager.truncatedNormal(new Shape(input.length, SEED_COLUMN_SIZE)).muli(truncation);
return new NDList(seed, classes, manager.create(truncation));
}
}