All Downloads are FREE. Search and download functionalities are using the official Maven repository.

ai.djl.training.loss.HingeLoss Maven / Gradle / Ivy

The newest version!
/*
 * Copyright 2019 Amazon.com, Inc. or its affiliates. All Rights Reserved.
 *
 * Licensed under the Apache License, Version 2.0 (the "License"). You may not use this file except in compliance
 * with the License. A copy of the License is located at
 *
 * http://aws.amazon.com/apache2.0/
 *
 * or in the "license" file accompanying this file. This file is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES
 * OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions
 * and limitations under the License.
 */
package ai.djl.training.loss;

import ai.djl.ndarray.NDArray;
import ai.djl.ndarray.NDArrays;
import ai.djl.ndarray.NDList;
import ai.djl.nn.Activation;

/**
 * {@code HingeLoss} is a type of {@link Loss}.
 *
 * 

Hinge loss is defined by: \(L = \sum_i max(0, margin - pred_i \cdot label_i)\) */ public class HingeLoss extends Loss { private int margin; private float weight; /** Calculates Hinge loss. */ public HingeLoss() { this("HingeLoss"); } /** * Calculates Hinge loss. * * @param name the name of the loss */ public HingeLoss(String name) { this(name, 1, 1); } /** * Calculates Hinge loss. * * @param name the name of the loss * @param margin the margin in hinge loss. Defaults to 1.0 * @param weight the weight to apply on loss value, default 1 */ public HingeLoss(String name, int margin, float weight) { super(name); this.margin = margin; this.weight = weight; } /** {@inheritDoc} */ @Override public NDArray evaluate(NDList label, NDList prediction) { NDArray pred = prediction.singletonOrThrow(); NDArray labelReshaped = label.singletonOrThrow().reshape(pred.getShape()); NDArray loss = Activation.relu(NDArrays.sub(margin, labelReshaped.mul(pred))); if (weight != 1) { loss = loss.mul(weight); } return loss.mean(); } }





© 2015 - 2024 Weber Informatics LLC | Privacy Policy