All Downloads are FREE. Search and download functionalities are using the official Maven repository.

ai.djl.training.loss.SimpleCompositeLoss Maven / Gradle / Ivy

The newest version!
/*
 * Copyright 2019 Amazon.com, Inc. or its affiliates. All Rights Reserved.
 *
 * Licensed under the Apache License, Version 2.0 (the "License"). You may not use this file except in compliance
 * with the License. A copy of the License is located at
 *
 * http://aws.amazon.com/apache2.0/
 *
 * or in the "license" file accompanying this file. This file is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES
 * OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions
 * and limitations under the License.
 */
package ai.djl.training.loss;

import ai.djl.ndarray.NDList;
import ai.djl.util.Pair;

import java.util.ArrayList;

/**
 * {@code SimpleCompositeLoss} is an implementation of the {@link Loss} abstract class that can
 * combine different {@link Loss} functions by adding the individual losses together.
 *
 * 

For cases where the losses use only a single index of the labels and/or predictions, use the * {@link IndexLoss}. * *

For an example of using this loss, see the * captcha training example. */ public class SimpleCompositeLoss extends AbstractCompositeLoss { /** * Creates a new empty instance of {@code CompositeLoss} that can combine the given {@link Loss} * components. */ public SimpleCompositeLoss() { this("CompositeLoss"); } /** * Creates a new empty instance of {@code CompositeLoss} that can combine the given {@link Loss} * components. * * @param name the display name of the loss */ public SimpleCompositeLoss(String name) { super(name); components = new ArrayList<>(); } /** * Adds a Loss that applies to all labels and predictions to this composite loss. * * @param loss the loss to add * @return this composite loss */ public SimpleCompositeLoss addLoss(Loss loss) { components.add(loss); return this; } /** {@inheritDoc} */ @Override protected Pair inputForComponent( int componentIndex, NDList labels, NDList predictions) { return new Pair<>(labels, predictions); } }





© 2015 - 2024 Weber Informatics LLC | Privacy Policy