ai.djl.Model Maven / Gradle / Ivy
/*
* Copyright 2019 Amazon.com, Inc. or its affiliates. All Rights Reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License"). You may not use this file except in compliance
* with the License. A copy of the License is located at
*
* http://aws.amazon.com/apache2.0/
*
* or in the "license" file accompanying this file. This file is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES
* OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions
* and limitations under the License.
*/
package ai.djl;
import ai.djl.engine.Engine;
import ai.djl.inference.Predictor;
import ai.djl.ndarray.NDManager;
import ai.djl.ndarray.types.DataType;
import ai.djl.ndarray.types.Shape;
import ai.djl.nn.Block;
import ai.djl.training.Trainer;
import ai.djl.training.TrainingConfig;
import ai.djl.translate.Translator;
import ai.djl.util.PairList;
import java.io.IOException;
import java.io.InputStream;
import java.net.URL;
import java.nio.file.Path;
import java.util.Map;
import java.util.function.Function;
/**
* A model is a collection of artifacts that is created by the training process.
*
* A deep learning model usually contains the following parts:
*
*
* - the {@link Block} of operations to run
*
- the {@link ai.djl.nn.Parameter}s that are trained
*
- Input/Output information: input and output parameter names, shape, etc.
*
- Other artifacts such as a synset for classification that would be used during
* pre-processing and post-processing
*
*
* For loading a pre-trained model, see {@link Model#load(Path, String)}
*
*
For training a model, see {@link Trainer}.
*
*
For running inference with a model, see {@link Predictor}.
*/
public interface Model extends AutoCloseable {
/**
* Creates an empty model instance.
*
* @param name the model name
* @return a new Model instance
*/
static Model newInstance(String name) {
return newInstance(name, (Device) null);
}
/**
* Creates an empty model instance on the specified {@link Device}.
*
* @param name the model name
* @param device the device to load the model onto
* @return a new model instance
*/
static Model newInstance(String name, Device device) {
return Engine.getInstance().newModel(name, device);
}
/**
* Creates an empty model instance on the specified {@link Device} and engine.
*
* @param name the model name
* @param engineName the name of the engine
* @return a new model instance
*/
static Model newInstance(String name, String engineName) {
Engine engine = Engine.getEngine(engineName);
return engine.newModel(name, null);
}
/**
* Creates an empty model instance on the specified {@link Device} and engine.
*
* @param name the model name
* @param device the device to load the model onto
* @param engineName the name of the engine
* @return a new model instance
*/
static Model newInstance(String name, Device device, String engineName) {
if (engineName == null || engineName.isEmpty()) {
return newInstance(name, device);
}
return Engine.getEngine(engineName).newModel(name, device);
}
/**
* Loads the model from the {@code modelPath}.
*
* @param modelPath the directory or file path of the model location
* @throws IOException when IO operation fails in loading a resource
* @throws MalformedModelException if model file is corrupted
*/
default void load(Path modelPath) throws IOException, MalformedModelException {
load(modelPath, null, null);
}
/**
* Loads the model from the {@code modelPath} and the given name.
*
* @param modelPath the directory or file path of the model location
* @param prefix the model file name or path prefix
* @throws IOException when IO operation fails in loading a resource
* @throws MalformedModelException if model file is corrupted
*/
default void load(Path modelPath, String prefix) throws IOException, MalformedModelException {
load(modelPath, prefix, null);
}
/**
* Loads the model from the {@code modelPath} with the name and options provided.
*
* @param modelPath the directory or file path of the model location
* @param prefix the model file name or path prefix
* @param options engine specific load model options, see documentation for each engine
* @throws IOException when IO operation fails in loading a resource
* @throws MalformedModelException if model file is corrupted
*/
void load(Path modelPath, String prefix, Map options)
throws IOException, MalformedModelException;
/**
* Loads the model from the {@code InputStream}.
*
* @param is the {@code InputStream} to load the model from
* @throws IOException when IO operation fails in loading a resource
* @throws MalformedModelException if model file is corrupted
*/
default void load(InputStream is) throws IOException, MalformedModelException {
load(is, null);
}
/**
* Loads the model from the {@code InputStream} with the options provided.
*
* @param is the {@code InputStream} to load the model from
* @param options engine specific load model options, see documentation for each engine
* @throws IOException when IO operation fails in loading a resource
* @throws MalformedModelException if model file is corrupted
*/
void load(InputStream is, Map options) throws IOException, MalformedModelException;
/**
* Saves the model to the specified {@code modelPath} with the name provided.
*
* @param modelPath the directory or file path of the model location
* @param newModelName the new model name to be saved, use null to keep original model name
* @throws IOException when IO operation fails in loading a resource
*/
void save(Path modelPath, String newModelName) throws IOException;
/**
* Returns the directory from where the model is loaded.
*
* @return the directory of the model location
*/
Path getModelPath();
/**
* Gets the block from the Model.
*
* @return the {@link Block}
*/
Block getBlock();
/**
* Sets the block for the Model for training and inference.
*
* @param block the {@link Block} used in Model
*/
void setBlock(Block block);
/**
* Gets the model name.
*
* @return name of the model
*/
String getName();
/**
* Returns the model's properties.
*
* @return the model's properties
*/
Map getProperties();
/**
* Returns the property of the model based on property name.
*
* @param key the name of the property
* @return the value of the property
*/
String getProperty(String key);
/**
* Returns the property of the model based on property name.
*
* @param key the name of the property
* @param defValue the default value if key not found
* @return the value of the property
*/
default String getProperty(String key, String defValue) {
String value = getProperty(key);
if (value == null || value.isEmpty()) {
return defValue;
}
return value;
}
/**
* Sets a property to the model.
*
* properties will be saved/loaded with model, user can store some information about the
* model in here.
*
* @param key the name of the property
* @param value the value of the property
*/
void setProperty(String key, String value);
/**
* Returns the property of the model based on property name.
*
* @param key the name of the property
* @param defValue the default value if key not found
* @return the value of the property
*/
default int intProperty(String key, int defValue) {
String value = getProperty(key);
if (value == null || value.isEmpty()) {
return defValue;
}
return Integer.parseInt(value);
}
/**
* Returns the property of the model based on property name.
*
* @param key the name of the property
* @param defValue the default value if key not found
* @return the value of the property
*/
default long longProperty(String key, long defValue) {
String value = getProperty(key);
if (value == null || value.isEmpty()) {
return defValue;
}
return Integer.parseInt(value);
}
/**
* Gets the {@link NDManager} from the model.
*
* @return the {@link NDManager}
*/
NDManager getNDManager();
/**
* Creates a new {@link Trainer} instance for a Model.
*
* @param trainingConfig training configuration settings
* @return the {@link Trainer} instance
*/
Trainer newTrainer(TrainingConfig trainingConfig);
/**
* Creates a new Predictor based on the model on the current device.
*
* @param translator the object used for pre-processing and postprocessing
* @param the input object for pre-processing
* @param the output object from postprocessing
* @return an instance of {@code Predictor}
*/
default Predictor newPredictor(Translator translator) {
return newPredictor(translator, getNDManager().getDevice());
}
/**
* Creates a new Predictor based on the model.
*
* @param translator the object used for pre-processing and postprocessing
* @param device the device to use for prediction
* @param the input object for pre-processing
* @param the output object from postprocessing
* @return an instance of {@code Predictor}
*/
Predictor newPredictor(Translator translator, Device device);
/**
* Returns the input descriptor of the model.
*
* It contains the information that can be extracted from the model, usually name, shape,
* layout and DataType.
*
* @return a PairList of String and Shape
*/
PairList describeInput();
/**
* Returns the output descriptor of the model.
*
* It contains the output information that can be obtained from the model.
*
* @return a PairList of String and Shape
*/
PairList describeOutput();
/**
* Returns the artifact names associated with the model.
*
* @return an array of artifact names
*/
String[] getArtifactNames();
/**
* Attempts to load the artifact using the given function and cache it if the specified artifact
* is not already cached.
*
* Model will cache loaded artifact, so the user doesn't need to keep tracking it.
*
*
{@code
* String synset = model.getArtifact("synset.txt", k -> IOUtils.toString(k)));
* }
*
* @param name the name of the desired artifact
* @param function the function to load the artifact
* @param the type of the returned artifact object
* @return the current (existing or computed) artifact associated with the specified name, or
* null if the computed value is null
* @throws IOException when IO operation fails in loading a resource
* @throws ClassCastException if the cached artifact cannot be cast to the target class
*/
T getArtifact(String name, Function function) throws IOException;
/**
* Finds an artifact resource with a given name in the model.
*
* @param name the name of the desired artifact
* @return a {@link java.net.URL} object or {@code null} if no artifact with this name is found
* @throws IOException when IO operation fails in loading a resource
*/
URL getArtifact(String name) throws IOException;
/**
* Finds an artifact resource with a given name in the model.
*
* @param name the name of the desired artifact
* @return a {@link java.io.InputStream} object or {@code null} if no resource with this name is
* found
* @throws IOException when IO operation fails in loading a resource
*/
InputStream getArtifactAsStream(String name) throws IOException;
/**
* Sets the standard data type used within the model.
*
* @param dataType the standard data type to use
*/
void setDataType(DataType dataType);
/**
* Returns the standard data type used within the model.
*
* @return the standard data type used within the model
*/
DataType getDataType();
/**
* Casts the model to support a different precision level.
*
* For example, you can cast the precision from Float to Int
*
* @param dataType the target dataType you would like to cast to
*/
default void cast(DataType dataType) {
throw new UnsupportedOperationException("Not implemented yet");
}
/**
* Converts the model to use a lower precision quantized network.
*
*
Quantization converts the network to use int8 data type where possible for smaller model
* size and faster computation without too large a drop in accuracy. See original paper.
*/
default void quantize() {
throw new UnsupportedOperationException("Not implemented yet");
}
/** {@inheritDoc} */
@Override
void close();
}