All Downloads are FREE. Search and download functionalities are using the official Maven repository.

ai.djl.modality.cv.output.Mask Maven / Gradle / Ivy

/*
 * Copyright 2018 Amazon.com, Inc. or its affiliates. All Rights Reserved.
 *
 * Licensed under the Apache License, Version 2.0 (the "License"). You may not use this file except in compliance
 * with the License. A copy of the License is located at
 *
 * http://aws.amazon.com/apache2.0/
 *
 * or in the "license" file accompanying this file. This file is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES
 * OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions
 * and limitations under the License.
 */
package ai.djl.modality.cv.output;

import ai.djl.ndarray.NDArray;
import ai.djl.ndarray.types.Shape;
import ai.djl.util.JsonUtils;

import com.google.gson.JsonObject;
import com.google.gson.JsonPrimitive;

/**
 * A mask with a probability for each pixel within a bounding rectangle.
 *
 * 

This class is usually used to record the results of an Image Segmentation task. */ public class Mask extends Rectangle { private static final long serialVersionUID = 1L; private float[][] probDist; private boolean fullImageMask; /** * Constructs a Mask with the given data. * * @param x the left coordinate of the bounding rectangle * @param y the top coordinate of the bounding rectangle * @param width the width of the bounding rectangle * @param height the height of the bounding rectangle * @param dist the probability distribution for each pixel in the rectangle */ public Mask(double x, double y, double width, double height, float[][] dist) { this(x, y, width, height, dist, false); } /** * Constructs a Mask with the given data. * * @param x the left coordinate of the bounding rectangle * @param y the top coordinate of the bounding rectangle * @param width the width of the bounding rectangle * @param height the height of the bounding rectangle * @param dist the probability distribution for each pixel in the rectangle * @param fullImageMask if the mask if for full image */ public Mask( double x, double y, double width, double height, float[][] dist, boolean fullImageMask) { super(x, y, width, height); this.probDist = dist; this.fullImageMask = fullImageMask; } /** * Returns the probability for each pixel. * * @return the probability for each pixel */ public float[][] getProbDist() { return probDist; } /** * Returns if the mask is for full image. * * @return if the mask is for full image */ public boolean isFullImageMask() { return fullImageMask; } /** {@inheritDoc} */ @Override public JsonObject serialize() { JsonObject ret = super.serialize(); if (fullImageMask) { ret.add("fullImageMask", new JsonPrimitive(true)); } ret.add("mask", JsonUtils.GSON.toJsonTree(probDist)); return ret; } /** * Converts the mask tensor to a mask array. * * @param array the mask NDArray * @return the mask array */ public static float[][] toMask(NDArray array) { Shape maskShape = array.getShape(); int height = (int) maskShape.get(0); int width = (int) maskShape.get(1); float[] flattened = array.toFloatArray(); float[][] mask = new float[height][width]; for (int i = 0; i < height; i++) { System.arraycopy(flattened, i * width, mask[i], 0, width); } return mask; } }





© 2015 - 2025 Weber Informatics LLC | Privacy Policy