ai.djl.modality.cv.translator.ImageClassificationTranslator Maven / Gradle / Ivy
/*
* Copyright 2019 Amazon.com, Inc. or its affiliates. All Rights Reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License"). You may not use this file except in compliance
* with the License. A copy of the License is located at
*
* http://aws.amazon.com/apache2.0/
*
* or in the "license" file accompanying this file. This file is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES
* OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions
* and limitations under the License.
*/
package ai.djl.modality.cv.translator;
import ai.djl.modality.Classifications;
import ai.djl.ndarray.NDArray;
import ai.djl.ndarray.NDList;
import ai.djl.translate.ArgumentsUtil;
import ai.djl.translate.TranslatorContext;
import ai.djl.translate.TranslatorOptions;
import java.io.IOException;
import java.util.List;
import java.util.Map;
/** A generic {@link ai.djl.translate.Translator} for Image Classification tasks. */
public class ImageClassificationTranslator extends BaseImageTranslator {
private SynsetLoader synsetLoader;
private boolean applySoftmax;
private int topK;
private List classes;
/**
* Constructs an Image Classification using {@link Builder}.
*
* @param builder the data to build with
*/
public ImageClassificationTranslator(Builder builder) {
super(builder);
this.synsetLoader = builder.synsetLoader;
this.applySoftmax = builder.applySoftmax;
this.topK = builder.topK;
}
/** {@inheritDoc} */
@Override
public void prepare(TranslatorContext ctx) throws IOException {
if (classes == null) {
classes = synsetLoader.load(ctx.getModel());
}
}
/** {@inheritDoc} */
@Override
public Classifications processOutput(TranslatorContext ctx, NDList list) {
NDArray probabilitiesNd = list.singletonOrThrow();
if (applySoftmax) {
probabilitiesNd = probabilitiesNd.softmax(0);
}
return new Classifications(classes, probabilitiesNd, topK);
}
/** {@inheritDoc} */
@Override
public TranslatorOptions getExpansions() {
return new ImageClassificationTranslatorFactory().withTranslator(this);
}
/**
* Creates a builder to build a {@code ImageClassificationTranslator}.
*
* @return a new builder
*/
public static Builder builder() {
return new Builder();
}
/**
* Creates a builder to build a {@code ImageClassificationTranslator} with specified arguments.
*
* @param arguments arguments to specify builder options
* @return a new builder
*/
public static Builder builder(Map arguments) {
Builder builder = new Builder();
builder.configPreProcess(arguments);
builder.configPostProcess(arguments);
return builder;
}
/** A Builder to construct a {@code ImageClassificationTranslator}. */
public static class Builder extends ClassificationBuilder {
private boolean applySoftmax;
private int topK = 5;
Builder() {}
/**
* Set the topK number of classes to be displayed.
*
* @param topK the number of top classes to return
* @return the builder
*/
public Builder optTopK(int topK) {
this.topK = topK;
return this;
}
/**
* Sets whether to apply softmax when processing output. Some models already include softmax
* in the last layer, so don't apply softmax when processing model output.
*
* @param applySoftmax boolean whether to apply softmax
* @return the builder
*/
public Builder optApplySoftmax(boolean applySoftmax) {
this.applySoftmax = applySoftmax;
return this;
}
/** {@inheritDoc} */
@Override
protected Builder self() {
return this;
}
/** {@inheritDoc} */
@Override
protected void configPostProcess(Map arguments) {
super.configPostProcess(arguments);
applySoftmax = ArgumentsUtil.booleanValue(arguments, "applySoftmax");
topK = ArgumentsUtil.intValue(arguments, "topK", 5);
}
/**
* Builds the {@link ImageClassificationTranslator} with the provided data.
*
* @return an {@link ImageClassificationTranslator}
*/
public ImageClassificationTranslator build() {
validate();
return new ImageClassificationTranslator(this);
}
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy