ai.djl.modality.cv.translator.SemanticSegmentationTranslator Maven / Gradle / Ivy
The newest version!
/*
* Copyright 2022 Amazon.com, Inc. or its affiliates. All Rights Reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License"). You may not use this file except in compliance
* with the License. A copy of the License is located at
*
* http://aws.amazon.com/apache2.0/
*
* or in the "license" file accompanying this file. This file is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES
* OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions
* and limitations under the License.
*/
package ai.djl.modality.cv.translator;
import ai.djl.modality.cv.Image;
import ai.djl.modality.cv.output.CategoryMask;
import ai.djl.modality.cv.util.NDImageUtils;
import ai.djl.ndarray.NDArray;
import ai.djl.ndarray.NDList;
import ai.djl.ndarray.types.Shape;
import ai.djl.translate.ArgumentsUtil;
import ai.djl.translate.Transform;
import ai.djl.translate.Translator;
import ai.djl.translate.TranslatorContext;
import java.io.IOException;
import java.util.List;
import java.util.Map;
/**
* A {@link Translator} that post-process the {@link Image} into {@link CategoryMask} with output
* mask representing the class that each pixel in the original image belong to.
*/
public class SemanticSegmentationTranslator extends BaseImageTranslator {
private SynsetLoader synsetLoader;
private final int shortEdge;
private final int maxEdge;
private List classes;
/**
* Creates the Semantic Segmentation translator from the given builder.
*
* @param builder the builder for the translator
*/
public SemanticSegmentationTranslator(Builder builder) {
super(builder);
this.synsetLoader = builder.synsetLoader;
this.shortEdge = builder.shortEdge;
this.maxEdge = builder.maxEdge;
pipeline.insert(0, null, new ResizeShort());
}
/** {@inheritDoc} */
@Override
public void prepare(TranslatorContext ctx) throws IOException {
if (classes == null) {
classes = synsetLoader.load(ctx.getModel());
}
}
/** {@inheritDoc} */
@Override
public NDList processInput(TranslatorContext ctx, Image image) {
return super.processInput(ctx, image);
}
/** {@inheritDoc} */
@Override
public CategoryMask processOutput(TranslatorContext ctx, NDList list) {
// scores contains the probabilities of each pixel being a certain object
float[] scores = list.get(1).toFloatArray();
Shape shape = list.get(1).getShape();
int width = (int) shape.get(2);
int height = (int) shape.get(1);
int[][] mask = new int[height][width];
int imageSize = width * height;
// Build mask array
int numOfClasses = classes.size();
for (int h = 0; h < height; h++) {
for (int w = 0; w < width; w++) {
int index = h * width + w;
int maxi = 0;
double maxnum = -Double.MAX_VALUE;
for (int i = 0; i < numOfClasses; ++i) {
// get score for each i at the h,w pixel of the image
float score = scores[i * imageSize + index];
if (score > maxnum) {
maxnum = score;
maxi = i;
}
}
mask[h][w] = maxi;
}
}
return new CategoryMask(classes, mask);
}
/**
* Creates a builder to build a {@code SemanticSegmentationTranslator}.
*
* @return a new builder
*/
public static Builder builder() {
return new Builder();
}
/**
* Creates a builder to build a {@code SemanticSegmentationTranslator} with specified arguments.
*
* @param arguments arguments to specify builder options
* @return a new builder
*/
public static Builder builder(Map arguments) {
Builder builder = new Builder();
builder.configPreProcess(arguments);
builder.configPostProcess(arguments);
return builder;
}
/** Resizes the image based on the shorter edge or maximum edge length. */
private class ResizeShort implements Transform {
/** {@inheritDoc} */
@Override
public NDArray transform(NDArray array) {
Shape shape = array.getShape();
int width = (int) shape.get(1);
int height = (int) shape.get(0);
int min = Math.min(width, height);
int max = Math.max(width, height);
float scale = shortEdge / (float) min;
if (Math.round(scale * max) > maxEdge) {
scale = maxEdge / (float) max;
}
int rescaledHeight = Math.round(height * scale);
int rescaledWidth = Math.round(width * scale);
return NDImageUtils.resize(array, rescaledWidth, rescaledHeight);
}
}
/** The builder for Semantic Segmentation translator. */
public static class Builder extends ClassificationBuilder {
int shortEdge = 600;
int maxEdge = 1000;
Builder() {}
/** {@inheritDoc} */
@Override
protected Builder self() {
return this;
}
/** {@inheritDoc} */
@Override
protected void configPostProcess(Map arguments) {
super.configPostProcess(arguments);
shortEdge = ArgumentsUtil.intValue(arguments, "shortEdge", 600);
maxEdge = ArgumentsUtil.intValue(arguments, "maxEdge", 1000);
}
/**
* Builds the translator.
*
* @return the new translator
*/
public SemanticSegmentationTranslator build() {
validate();
return new SemanticSegmentationTranslator(this);
}
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy