ai.djl.modality.nlp.translator.SimpleText2TextTranslator Maven / Gradle / Ivy
The newest version!
/*
* Copyright 2019 Amazon.com, Inc. or its affiliates. All Rights Reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License"). You may not use this file except in compliance
* with the License. A copy of the License is located at
*
* http://aws.amazon.com/apache2.0/
*
* or in the "license" file accompanying this file. This file is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES
* OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions
* and limitations under the License.
*/
package ai.djl.modality.nlp.translator;
import ai.djl.Model;
import ai.djl.modality.nlp.Decoder;
import ai.djl.modality.nlp.Encoder;
import ai.djl.modality.nlp.EncoderDecoder;
import ai.djl.modality.nlp.embedding.TrainableTextEmbedding;
import ai.djl.modality.nlp.preprocess.LowerCaseConvertor;
import ai.djl.modality.nlp.preprocess.PunctuationSeparator;
import ai.djl.modality.nlp.preprocess.SimpleTokenizer;
import ai.djl.modality.nlp.preprocess.TextProcessor;
import ai.djl.modality.nlp.preprocess.TextTruncator;
import ai.djl.ndarray.NDArray;
import ai.djl.ndarray.NDList;
import ai.djl.ndarray.NDManager;
import ai.djl.ndarray.types.DataType;
import ai.djl.ndarray.types.Shape;
import ai.djl.nn.BlockList;
import ai.djl.nn.SequentialBlock;
import ai.djl.translate.Batchifier;
import ai.djl.translate.PaddingStackBatchifier;
import ai.djl.translate.Translator;
import ai.djl.translate.TranslatorContext;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.Collections;
import java.util.List;
import java.util.Locale;
/**
* A {@link Translator} that performs pre-process and post-processing for a sequence-to-sequence
* text model.
*/
public class SimpleText2TextTranslator implements Translator {
private SimpleTokenizer tokenizer = new SimpleTokenizer();
private TrainableTextEmbedding sourceEmbedding;
private TrainableTextEmbedding targetEmbedding;
private List textProcessors =
Arrays.asList(
new SimpleTokenizer(),
new LowerCaseConvertor(Locale.ENGLISH),
new PunctuationSeparator(),
new TextTruncator(10));
/** {@inheritDoc} */
@Override
public String processOutput(TranslatorContext ctx, NDList list) {
if (list.singletonOrThrow().getShape().dimension() > 2) {
throw new IllegalArgumentException(
"Input must correspond to one sentence. Shape must be of 2 or less dimensions");
}
if (targetEmbedding == null) {
Model model = ctx.getModel();
EncoderDecoder encoderDecoder = (EncoderDecoder) model.getBlock();
BlockList children = encoderDecoder.getChildren();
Decoder decoder = (Decoder) children.get(1).getValue();
SequentialBlock sequentialBlock =
(SequentialBlock) decoder.getChildren().get(0).getValue();
targetEmbedding =
(TrainableTextEmbedding) sequentialBlock.getChildren().get(0).getValue();
}
List output = new ArrayList<>();
for (String token :
targetEmbedding.unembedText(
list.singletonOrThrow().toType(DataType.INT32, false).flatten())) {
if ("".equals(token)) {
break;
}
output.add(token);
}
return tokenizer.buildSentence(output);
}
/** {@inheritDoc} */
@Override
public NDList processInput(TranslatorContext ctx, String input) {
Model model = ctx.getModel();
if (sourceEmbedding == null) {
EncoderDecoder encoderDecoder = (EncoderDecoder) model.getBlock();
BlockList children = encoderDecoder.getChildren();
Encoder encoder = (Encoder) children.get(0).getValue();
SequentialBlock sequentialBlock =
(SequentialBlock) encoder.getChildren().get(0).getValue();
sourceEmbedding =
(TrainableTextEmbedding) sequentialBlock.getChildren().get(0).getValue();
}
List tokens = Collections.singletonList(input);
for (TextProcessor textProcessor : textProcessors) {
tokens = textProcessor.preprocess(tokens);
}
return new NDList(
model.getNDManager().create(sourceEmbedding.preprocessTextToEmbed(tokens)),
model.getNDManager()
.create(sourceEmbedding.preprocessTextToEmbed(Arrays.asList(""))));
}
/** {@inheritDoc} */
@Override
public Batchifier getBatchifier() {
return PaddingStackBatchifier.builder()
.optIncludeValidLengths(false)
.addPad(0, 0, this::get, 10)
.build();
}
private NDArray get(NDManager manager) {
return manager.ones(new Shape(1))
.mul(sourceEmbedding.preprocessTextToEmbed(Collections.singletonList(""))[0]);
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy