ai.djl.nn.Blocks Maven / Gradle / Ivy
The newest version!
/*
* Copyright 2019 Amazon.com, Inc. or its affiliates. All Rights Reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License"). You may not use this file except in compliance
* with the License. A copy of the License is located at
*
* http://aws.amazon.com/apache2.0/
*
* or in the "license" file accompanying this file. This file is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES
* OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions
* and limitations under the License.
*/
package ai.djl.nn;
import ai.djl.ndarray.NDArray;
import ai.djl.ndarray.NDList;
import ai.djl.ndarray.NDManager;
import ai.djl.ndarray.types.DataType;
import ai.djl.ndarray.types.Shape;
import ai.djl.util.Pair;
import ai.djl.util.PairList;
import java.util.stream.Collectors;
import java.util.stream.Stream;
/** Utility class that provides some useful blocks. */
public final class Blocks {
private Blocks() {}
/**
* Inflates the {@link ai.djl.ndarray.NDArray} provided as input to a 2-D {@link
* ai.djl.ndarray.NDArray} of shape (batch, size).
*
* @param array a array to be flattened
* @return a {@link NDList} that contains the inflated {@link ai.djl.ndarray.NDArray}
*/
public static NDArray batchFlatten(NDArray array) {
long batch = array.size(0);
if (batch == 0) {
// calculate the size of second dimension manually as using -1 would not work here
return array.reshape(batch, array.getShape().slice(1).size());
}
return array.reshape(batch, -1);
}
/**
* Inflates the {@link ai.djl.ndarray.NDArray} provided as input to a 2-D {@link
* ai.djl.ndarray.NDArray} of shape (batch, size).
*
* @param array a array to be flattened
* @param size the input size
* @return a {@link NDList} that contains the inflated {@link ai.djl.ndarray.NDArray}
* @throws IndexOutOfBoundsException if the input {@link NDList} has more than one {@link
* ai.djl.ndarray.NDArray}
*/
public static NDArray batchFlatten(NDArray array, long size) {
return array.reshape(-1, size);
}
/**
* Creates a {@link Block} whose forward function applies the {@link #batchFlatten(NDArray)
* batchFlatten} method.
*
* @return a {@link Block} whose forward function applies the {@link #batchFlatten(NDArray)
* batchFlatten} method
*/
public static Block batchFlattenBlock() {
return LambdaBlock.singleton(Blocks::batchFlatten, "batchFlatten");
}
/**
* Creates a {@link Block} whose forward function applies the {@link #batchFlatten(NDArray)
* batchFlatten} method. The size of input to the block returned must be batch_size * size.
*
* @param size the expected size of each input
* @return a {@link Block} whose forward function applies the {@link #batchFlatten(NDArray)
* batchFlatten} method
*/
public static Block batchFlattenBlock(long size) {
return LambdaBlock.singleton(array -> batchFlatten(array, size), "batchFlatten");
}
/**
* Creates a {@link LambdaBlock} that performs the identity function.
*
* @return an identity {@link Block}
*/
public static Block identityBlock() {
return new LambdaBlock(x -> x, "identity");
}
/**
* Creates a {@link LambdaBlock} that return all-ones NDList.
*
* @return an all-ones {@link Block}
*/
public static Block onesBlock(PairList shapes, String[] names) {
return new LambdaBlock(
a -> {
Shape[] inShapes = a.getShapes();
NDManager manager = a.getManager();
NDList list = new NDList(shapes.size());
int index = 0;
for (Pair pair : shapes) {
long[] shape = pair.getValue().getShape().clone();
for (int i = 0; i < shape.length; ++i) {
if (shape[i] == -1) {
shape[i] = inShapes[index].get(i);
}
}
DataType dataType = pair.getKey();
NDArray arr = manager.ones(new Shape(shape), dataType);
if (names.length == list.size()) {
arr.setName(names[index++]);
}
list.add(arr);
}
return list;
},
"ones");
}
/**
* Returns a string representation of the passed {@link Block} describing the input axes, output
* axes, and the block's children.
*
* @param block the block to describe
* @param blockName the name to be used for the passed block, or null
if its class
* name is to be used
* @param beginAxis skips all axes before this axis; use 0
to print all axes and
* 1
to skip the batch axis.
* @return the string representation
*/
public static String describe(Block block, String blockName, int beginAxis) {
Shape[] inputShapes = block.isInitialized() ? block.getInputShapes() : null;
Shape[] outputShapes = inputShapes != null ? block.getOutputShapes(inputShapes) : null;
StringBuilder sb = new StringBuilder(200);
if (block instanceof LambdaBlock
&& !LambdaBlock.DEFAULT_NAME.equals(((LambdaBlock) block).getName())) {
sb.append(((LambdaBlock) block).getName());
} else if (blockName != null) {
sb.append(blockName);
} else {
sb.append(block.getClass().getSimpleName());
}
if (inputShapes != null) {
sb.append(
Stream.of(inputShapes)
.map(shape -> shape.slice(beginAxis).toString())
.collect(Collectors.joining("+")));
}
if (!block.getChildren().isEmpty()) {
sb.append(" {\n");
for (Pair pair : block.getChildren()) {
String child = describe(pair.getValue(), pair.getKey().substring(2), beginAxis);
sb.append(child.replaceAll("(?m)^", "\t")).append('\n');
}
sb.append('}');
}
if (outputShapes != null) {
sb.append(" -> ");
sb.append(
Stream.of(outputShapes)
.map(shape -> shape.slice(beginAxis).toString())
.collect(Collectors.joining("+")));
}
return sb.toString();
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy