All Downloads are FREE. Search and download functionalities are using the official Maven repository.

ai.djl.nn.core.Prelu Maven / Gradle / Ivy

/*
 * Copyright 2019 Amazon.com, Inc. or its affiliates. All Rights Reserved.
 *
 * Licensed under the Apache License, Version 2.0 (the "License"). You may not use this file except in compliance
 * with the License. A copy of the License is located at
 *
 * http://aws.amazon.com/apache2.0/
 *
 * or in the "license" file accompanying this file. This file is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES
 * OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions
 * and limitations under the License.
 */
package ai.djl.nn.core;

import ai.djl.MalformedModelException;
import ai.djl.ndarray.NDArray;
import ai.djl.ndarray.NDList;
import ai.djl.ndarray.internal.NDArrayEx;
import ai.djl.ndarray.types.Shape;
import ai.djl.nn.AbstractBlock;
import ai.djl.nn.Parameter;
import ai.djl.training.ParameterStore;
import ai.djl.util.PairList;

import java.io.DataInputStream;
import java.io.IOException;

/**
 * Applies Leaky Parametric ReLU activation element-wise to the input.
 *
 * 

Leaky ReLUs attempt to fix the 'dying ReLU' problem by allowing a small slope when the input * is negative and has a slope of one when input is positive. This is defined by \(y= x \gt 0 ? x : * slope * x\). * *

Parametric ReLU is a Leaky ReLU in which the slope is learnt during training. */ public class Prelu extends AbstractBlock { private static final byte VERSION = 2; private Parameter alpha; /** Creates a Parametric ReLU Block. */ @SuppressWarnings("this-escape") public Prelu() { super(VERSION); alpha = addParameter( Parameter.builder() .setName("alpha") .setType(Parameter.Type.WEIGHT) .optShape(new Shape()) .build()); } /** {@inheritDoc} */ @Override protected NDList forwardInternal( ParameterStore parameterStore, NDList inputs, boolean training, PairList params) { NDArray input = inputs.singletonOrThrow(); NDArray alphaArr = parameterStore.getValue(alpha, input.getDevice(), training); return prelu(input, alphaArr); } /** {@inheritDoc} */ @Override public Shape[] getOutputShapes(Shape[] inputs) { return new Shape[] {inputs[0]}; } /** {@inheritDoc} */ @Override public void loadMetadata(byte loadVersion, DataInputStream is) throws IOException, MalformedModelException { if (loadVersion == version) { readInputShapes(is); } else if (loadVersion != 1) { throw new MalformedModelException("Unsupported encoding version: " + loadVersion); } } /** * Applies a Prelu activation on the input {@link NDArray}. * *

Prelu is defined as \(y = max(0,x) + alpha * min(0, x) \) where alpha is learnable * parameter * * @param input the input {@link NDArray} * @param alpha learnable parameter * @return the {@link NDArray} after applying Prelu activation */ public static NDList prelu(NDArray input, NDArray alpha) { NDArrayEx ex = input.getNDArrayInternal(); return ex.prelu(input, alpha); } }





© 2015 - 2025 Weber Informatics LLC | Privacy Policy