ai.djl.nn.core.SparseMax Maven / Gradle / Ivy
The newest version!
/*
* Copyright 2022 Amazon.com, Inc. or its affiliates. All Rights Reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License"). You may not use this file except in compliance
* with the License. A copy of the License is located at
*
* http://aws.amazon.com/apache2.0/
*
* or in the "license" file accompanying this file. This file is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES
* OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions
* and limitations under the License.
*/
package ai.djl.nn.core;
import ai.djl.ndarray.NDArray;
import ai.djl.ndarray.NDArrays;
import ai.djl.ndarray.NDList;
import ai.djl.ndarray.types.DataType;
import ai.djl.ndarray.types.Shape;
import ai.djl.nn.AbstractBlock;
import ai.djl.training.ParameterStore;
import ai.djl.util.PairList;
import java.util.stream.IntStream;
/**
* {@code SparseMax} contains a generic implementation of sparsemax function the definition of
* SparseMax can be referred to https://arxiv.org/pdf/1602.02068.pdf. {@code SparseMax} is a simpler
* implementation of sparseMax function, where we set K as a hyperParameter(default 3). We only do
* softmax on those max-K data, and we set all the other value as 0.
*/
public class SparseMax extends AbstractBlock {
private static final Byte VERSION = 1;
private int axis;
private int topK;
/** Creates a sparseMax activation function for the last axis and 3 elements. */
public SparseMax() {
this(-1, 3);
}
/**
* Creates a sparseMax activation function along a given axis for 3 elements.
*
* @param axis the axis to do sparseMax for
*/
public SparseMax(int axis) {
this(axis, 3);
}
/**
* Creates a sparseMax activation function along a given axis and number of elements.
*
* @param axis the axis to do sparseMax for
* @param topK hyperParameter K
*/
public SparseMax(int axis, int topK) {
super(VERSION);
this.axis = axis;
this.topK = topK;
}
/** {@inheritDoc} */
@Override
public Shape[] getOutputShapes(Shape[] inputShapes) {
// the shape of input and output are the same
return new Shape[] {inputShapes[0]};
}
/** {@inheritDoc} */
@Override
protected NDList forwardInternal(
ParameterStore parameterStore,
NDList inputs,
boolean training,
PairList params) {
/*
A simple implementation of sparseMax, where we only calculate softMax with largest K data
*/
NDArray input = inputs.singletonOrThrow();
if (axis != -1) {
input = input.swapAxes(axis, -1);
}
// level should be: the max i-th is index j in input
NDArray level = input.argSort(-1, false).toType(DataType.INT64, false);
int lastDimSize = (int) input.size(input.getShape().dimension() - 1);
// maskTopK should be: the topK in input is 1 and other is zero
NDArray maskTopK =
NDArrays.add(
IntStream.range(0, topK)
.mapToObj(j -> level.get("..., {}", j).oneHot(lastDimSize))
.toArray(NDArray[]::new));
NDArray expSum =
input.exp().mul(maskTopK).sum(new int[] {-1}, true).broadcast(input.getShape());
NDArray output = input.exp().mul(maskTopK).div(expSum);
if (axis != -1) {
output = output.swapAxes(axis, -1);
}
return new NDList(output);
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy