ai.djl.nn.transformer.BertMaskedLanguageModelLoss Maven / Gradle / Ivy
The newest version!
/*
* Copyright 2020 Amazon.com, Inc. or its affiliates. All Rights Reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License"). You may not use this file except in compliance
* with the License. A copy of the License is located at
*
* http://aws.amazon.com/apache2.0/
*
* or in the "license" file accompanying this file. This file is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES
* OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions
* and limitations under the License.
*/
package ai.djl.nn.transformer;
import ai.djl.ndarray.NDArray;
import ai.djl.ndarray.NDList;
import ai.djl.ndarray.NDManager;
import ai.djl.ndarray.types.DataType;
import ai.djl.training.loss.Loss;
/** The loss for the bert masked language model task. */
public class BertMaskedLanguageModelLoss extends Loss {
private int labelIdx;
private int maskIdx;
private int logProbsIdx;
/**
* Creates an MLM loss.
*
* @param labelIdx index of labels
* @param maskIdx index of mask
* @param logProbsIdx index of log probs
*/
public BertMaskedLanguageModelLoss(int labelIdx, int maskIdx, int logProbsIdx) {
super("BertMLLoss");
this.labelIdx = labelIdx;
this.maskIdx = maskIdx;
this.logProbsIdx = logProbsIdx;
}
/** {@inheritDoc} */
@Override
public NDArray evaluate(NDList labels, NDList predictions) {
try (NDManager scope = NDManager.subManagerOf(labels)) {
scope.tempAttachAll(labels, predictions);
NDArray logProbs = predictions.get(logProbsIdx); // (B * I, D)
int dictionarySize = (int) logProbs.getShape().get(1);
NDArray targetIds = labels.get(labelIdx).flatten(); // (B * I)
NDArray mask = labels.get(maskIdx).flatten().toType(DataType.FLOAT32, false); // (B * I)
NDArray targetOneHots = targetIds.oneHot(dictionarySize);
// Multiplying log_probs and one_hot_labels leaves the log probabilities of the correct
// entries.
// By summing we get the total predicition quality. We want to minimize the error,
// so we negate the value - as we have logarithms, probability = 1 means log(prob) = 0,
// the less sure we are the smaller the log value.
NDArray perExampleLoss = logProbs.mul(targetOneHots).sum(new int[] {1}).mul(-1);
// Multiplying log_probs and one_hot_labels leaves the log probabilities of the correct
// entries.
// By summing we get the total prediction quality.
NDArray numerator = perExampleLoss.mul(mask).sum();
// We normalize the loss by the actual number of predictions we had to make
NDArray denominator = mask.sum().add(1e-5f);
NDArray result = numerator.div(denominator);
return scope.ret(result);
}
}
/**
* Calculates the percentage of correctly predicted masked tokens.
*
* @param labels expected tokens and mask
* @param predictions prediction of a bert model
* @return the percentage of correctly predicted masked tokens
*/
public NDArray accuracy(NDList labels, NDList predictions) {
try (NDManager scope = NDManager.subManagerOf(labels)) {
scope.tempAttachAll(labels, predictions);
NDArray mask = labels.get(maskIdx).flatten(); // (B * I)
NDArray targetIds = labels.get(labelIdx).flatten(); // (B * I)
NDArray logProbs = predictions.get(logProbsIdx); // (B * I, D)
NDArray predictedIs = logProbs.argMax(1).toType(DataType.INT32, false); // (B * I)
NDArray equal = predictedIs.eq(targetIds).mul(mask);
NDArray equalCount = equal.sum().toType(DataType.FLOAT32, false);
NDArray count = mask.sum().toType(DataType.FLOAT32, false);
NDArray result = equalCount.div(count);
return scope.ret(result);
}
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy