ai.djl.nn.transformer.BertNextSentenceLoss Maven / Gradle / Ivy
The newest version!
/*
* Copyright 2020 Amazon.com, Inc. or its affiliates. All Rights Reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License"). You may not use this file except in compliance
* with the License. A copy of the License is located at
*
* http://aws.amazon.com/apache2.0/
*
* or in the "license" file accompanying this file. This file is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES
* OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions
* and limitations under the License.
*/
package ai.djl.nn.transformer;
import ai.djl.ndarray.NDArray;
import ai.djl.ndarray.NDList;
import ai.djl.ndarray.NDManager;
import ai.djl.ndarray.types.DataType;
import ai.djl.training.loss.Loss;
/** Calculates the loss for the next sentence prediction task. */
public class BertNextSentenceLoss extends Loss {
private int labelIdx;
private int nextSentencePredictionIdx;
/**
* Creates a new bert next sentence loss.
*
* @param labelIdx index of the next sentence labels
* @param nextSentencePredictionIdx index of the next sentence prediction in the bert output
*/
public BertNextSentenceLoss(int labelIdx, int nextSentencePredictionIdx) {
super("BertNSLoss");
this.labelIdx = labelIdx;
this.nextSentencePredictionIdx = nextSentencePredictionIdx;
}
/** {@inheritDoc} */
@Override
public NDArray evaluate(NDList labels, NDList predictions) {
try (NDManager scope = NDManager.subManagerOf(labels)) {
scope.tempAttachAll(labels, predictions);
NDArray label = labels.get(labelIdx).toType(DataType.FLOAT32, false);
// predictions are log(softmax)
NDArray logPredictions = predictions.get(nextSentencePredictionIdx);
NDArray oneHotLabels = label.oneHot(2);
// we use negative log likelihood as loss: log(softmax) turns high confidence into
// negative values near one, low confidence into negative values near -inf,
// negating gives almost 0 for high confidence and near +inf for very low confidence
NDArray logPredictionForLabels = oneHotLabels.mul(logPredictions);
NDArray summedPredictions = logPredictionForLabels.sum(new int[] {1});
NDArray perExampleLoss = summedPredictions.mul(-1f);
NDArray result = perExampleLoss.mean();
return scope.ret(result);
}
}
/**
* Calculates the fraction of correct predictions.
*
* @param labels the labels with the correct predictions
* @param predictions the bert pretraining model output
* @return the fraction of correct predictions.
*/
public NDArray accuracy(NDList labels, NDList predictions) {
try (NDManager scope = NDManager.subManagerOf(labels)) {
scope.tempAttachAll(labels, predictions);
NDArray label = labels.get(labelIdx);
NDArray predictionLogProbs = predictions.get(nextSentencePredictionIdx);
// predictions are log(softmax) -> highest confidence is highest (negative) value near 0
NDArray prediction = predictionLogProbs.argMax(1).toType(DataType.INT32, false);
NDArray equalCount = label.eq(prediction).sum().toType(DataType.FLOAT32, false);
NDArray result = equalCount.div(label.getShape().size());
return scope.ret(result);
}
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy