ai.djl.training.ParameterStore Maven / Gradle / Ivy
The newest version!
/*
* Copyright 2019 Amazon.com, Inc. or its affiliates. All Rights Reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License"). You may not use this file except in compliance
* with the License. A copy of the License is located at
*
* http://aws.amazon.com/apache2.0/
*
* or in the "license" file accompanying this file. This file is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES
* OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions
* and limitations under the License.
*/
package ai.djl.training;
import ai.djl.Device;
import ai.djl.Device.MultiDevice;
import ai.djl.ndarray.NDArray;
import ai.djl.ndarray.NDManager;
import ai.djl.nn.Parameter;
import java.util.ArrayList;
import java.util.Collections;
import java.util.List;
import java.util.Map;
import java.util.concurrent.ConcurrentHashMap;
/**
* The {@code ParameterStore} contains a map from a parameter to the mirrors of it on other devices.
*/
public class ParameterStore {
private NDManager manager;
private Map parameterMap;
private Map deviceMap;
private boolean copy;
private ParameterServer parameterServer;
/** Constructs a new {@code ParameterStore} instance. */
public ParameterStore() {
this(NDManager.newBaseManager(), false);
}
/**
* Constructs an empty {@code ParameterStore}.
*
* @param manager the manager to attach mirrored parameters to
* @param copy whether to always copy even for the same device as the original parameter
*/
public ParameterStore(NDManager manager, boolean copy) {
this.manager = manager;
this.copy = copy;
parameterMap = new ConcurrentHashMap<>();
deviceMap = new ConcurrentHashMap<>();
deviceMap.put(manager.getDevice(), 0);
}
/**
* Sets the parameterServer used to apply updates to the parameters.
*
* @param parameterServer the parameterServer
* @param devices the devices to create mirrored parameters on
*/
public void setParameterServer(ParameterServer parameterServer, Device[] devices) {
this.parameterServer = parameterServer;
deviceMap.clear();
for (int i = 0; i < devices.length; ++i) {
if (devices[i] instanceof MultiDevice) {
throw new IllegalArgumentException(
"The parameter store does not support MultiDevices");
}
if (deviceMap.put(devices[i], i) != null) {
throw new IllegalArgumentException("Duplicated devices are not allowed.");
}
}
}
/** Updates all the mirrored parameters. */
public void updateAllParameters() {
for (Map.Entry entry : parameterMap.entrySet()) {
String parameterId = entry.getKey();
ParameterData data = entry.getValue();
if (data.requireGradient()) {
NDArray[] params = data.toArray();
parameterServer.update(parameterId, params);
}
}
}
/**
* Returns the value of a mirrored parameter on a device.
*
* @param parameter the parameter to get the value for
* @param device the device to get the mirror from
* @param training true for a training forward pass
* @return the value of the mirrored parameter on the device
*/
public NDArray getValue(Parameter parameter, Device device, boolean training) {
// for those optional parameters, they might not be in the ParameterStore
if (parameter == null) {
return null;
}
String parameterId = parameter.getId();
int index = deviceMap.get(device);
ParameterData data =
parameterMap.computeIfAbsent(parameterId, k -> new ParameterData(parameter));
if (data.isEmpty()) {
NDArray array = parameter.getArray();
if (parameterServer != null) {
// initialize on parameter store for first time
parameterServer.init(parameterId, new NDArray[] {array});
NDArray[] arrays = new NDArray[deviceMap.size()];
for (Map.Entry entry : deviceMap.entrySet()) {
Device dev = entry.getKey();
int i = entry.getValue();
if (i == index && array.getDevice().equals(dev)) {
arrays[i] = array;
} else {
arrays[i] = array.toDevice(dev, true);
arrays[i].attach(manager);
// some parameter doesn't require grad
// for example running_mean in BatchNorm
if (parameter.requiresGradient()) {
arrays[i].setRequiresGradient(true);
}
}
data.add(arrays[i]);
}
} else {
if (copy || !array.getDevice().equals(device)) {
array = array.toDevice(device, true);
array.attach(manager);
// some parameter doesn't require grad
// for example running_mean in BatchNorm
if (parameter.requiresGradient() && training) {
array.setRequiresGradient(true);
}
}
data.add(array);
}
}
return data.get(index);
}
/**
* Get the {@link NDManager} associated with {@code ParameterStore}.
*
* @return the {@link NDManager}
*/
public NDManager getManager() {
return manager;
}
/** Synchronizes the values on all mirrors with the main parameter. */
public void sync() {
for (ParameterData data : parameterMap.values()) {
data.sync();
}
}
/** A helper for {@link ParameterStore} that stores data for a single parameter. */
private final class ParameterData {
private Parameter parameter;
private List list;
private ParameterData(Parameter parameter) {
this.parameter = parameter;
list = Collections.synchronizedList(new ArrayList<>());
}
private boolean isEmpty() {
return list.isEmpty();
}
private void add(NDArray array) {
list.add(array);
}
private NDArray get(int index) {
return list.get(index);
}
private NDArray[] toArray() {
return list.toArray(new NDArray[0]);
}
private boolean requireGradient() {
return parameter.requiresGradient();
}
private void sync() {
NDArray array = parameter.getArray();
Device device = array.getDevice();
if (!deviceMap.containsKey(device)) {
// model's parameters maybe loaded on different device than any of training devices.
list.get(0).copyTo(array);
}
}
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy