ai.djl.training.hyperparameter.EasyHpo Maven / Gradle / Ivy
The newest version!
/*
* Copyright 2021 Amazon.com, Inc. or its affiliates. All Rights Reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License"). You may not use this file except in compliance
* with the License. A copy of the License is located at
*
* http://aws.amazon.com/apache2.0/
*
* or in the "license" file accompanying this file. This file is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES
* OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions
* and limitations under the License.
*/
package ai.djl.training.hyperparameter;
import ai.djl.Model;
import ai.djl.metric.Metrics;
import ai.djl.ndarray.types.Shape;
import ai.djl.training.EasyTrain;
import ai.djl.training.Trainer;
import ai.djl.training.TrainingConfig;
import ai.djl.training.TrainingResult;
import ai.djl.training.dataset.Dataset;
import ai.djl.training.dataset.RandomAccessDataset;
import ai.djl.training.hyperparameter.optimizer.HpORandom;
import ai.djl.training.hyperparameter.optimizer.HpOptimizer;
import ai.djl.training.hyperparameter.param.HpSet;
import ai.djl.translate.TranslateException;
import ai.djl.util.Pair;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import java.io.IOException;
/** Helper for easy training with hyperparameters. */
public abstract class EasyHpo {
private static final Logger logger = LoggerFactory.getLogger(EasyHpo.class);
/**
* Fits the model given the implemented abstract methods.
*
* @return the best model and training results
* @throws IOException for various exceptions depending on the dataset
* @throws TranslateException if there is an error while processing input
*/
public Pair fit() throws IOException, TranslateException {
// get training and validation dataset
RandomAccessDataset trainingSet = getDataset(Dataset.Usage.TRAIN);
RandomAccessDataset validateSet = getDataset(Dataset.Usage.TEST);
HpSet hyperParams = setupHyperParams();
HpOptimizer hpOptimizer = new HpORandom(hyperParams);
final int hyperparameterTests = numHyperParameterTests();
for (int i = 0; i < hyperparameterTests; i++) {
HpSet hpVals = hpOptimizer.nextConfig();
Pair trained = train(hpVals, trainingSet, validateSet);
trained.getKey().close();
float loss = trained.getValue().getValidateLoss();
hpOptimizer.update(hpVals, loss);
logger.info(
"--------- hp test {}/{} - Loss {} - {}", i, hyperparameterTests, loss, hpVals);
}
HpSet bestHpVals = hpOptimizer.getBest().getKey();
Pair trained = train(bestHpVals, trainingSet, validateSet);
TrainingResult result = trained.getValue();
Model model = trained.getKey();
saveModel(model, result);
return trained;
}
private Pair train(
HpSet hpVals, RandomAccessDataset trainingSet, RandomAccessDataset validateSet)
throws IOException, TranslateException {
// Construct neural network
Model model = buildModel(hpVals);
// setup training configuration
TrainingConfig config = setupTrainingConfig(hpVals);
try (Trainer trainer = model.newTrainer(config)) {
trainer.setMetrics(new Metrics());
// initialize trainer with proper input shape
trainer.initialize(inputShape(hpVals));
EasyTrain.fit(trainer, numEpochs(hpVals), trainingSet, validateSet);
TrainingResult result = trainer.getTrainingResult();
return new Pair<>(model, result);
}
}
/**
* Returns the initial hyperparameters.
*
* @return the initial hyperparameters
*/
protected abstract HpSet setupHyperParams();
/**
* Returns the dataset to train with.
*
* @param usage the usage of the dataset
* @return the dataset to train with
* @throws IOException if the dataset could not be loaded
*/
protected abstract RandomAccessDataset getDataset(Dataset.Usage usage) throws IOException;
/**
* Returns the {@link ai.djl.training.TrainingConfig} to use to train each hyperparameter set.
*
* @param hpVals the hyperparameters to train with
* @return the {@link ai.djl.training.TrainingConfig} to use to train each hyperparameter set
*/
protected abstract TrainingConfig setupTrainingConfig(HpSet hpVals);
/**
* Builds the {@link Model} and {@link ai.djl.nn.Block} to train.
*
* @param hpVals the hyperparameter values to use for the model
* @return the model to train
*/
protected abstract Model buildModel(HpSet hpVals);
/**
* Returns the input shape for the model.
*
* @param hpVals the hyperparameter values for the model
* @return returns the model input shape
*/
protected abstract Shape inputShape(HpSet hpVals);
/**
* Returns the number of epochs to train for the current hyperparameter set.
*
* @param hpVals the current hyperparameter set
* @return the number of epochs
*/
protected abstract int numEpochs(HpSet hpVals);
/**
* Returns the number of hyperparameter sets to train with.
*
* @return the number of hyperparameter sets to train with
*/
protected abstract int numHyperParameterTests();
/**
* Saves the best hyperparameter set.
*
* @param model the model to save
* @param result the training result for training with this model's hyperparameters
* @throws IOException if the model could not be saved
*/
protected void saveModel(Model model, TrainingResult result) throws IOException {}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy