All Downloads are FREE. Search and download functionalities are using the official Maven repository.

ai.djl.training.loss.AbstractCompositeLoss Maven / Gradle / Ivy

The newest version!
/*
 * Copyright 2019 Amazon.com, Inc. or its affiliates. All Rights Reserved.
 *
 * Licensed under the Apache License, Version 2.0 (the "License"). You may not use this file except in compliance
 * with the License. A copy of the License is located at
 *
 * http://aws.amazon.com/apache2.0/
 *
 * or in the "license" file accompanying this file. This file is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES
 * OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions
 * and limitations under the License.
 */
package ai.djl.training.loss;

import ai.djl.ndarray.NDArray;
import ai.djl.ndarray.NDArrays;
import ai.djl.ndarray.NDList;
import ai.djl.util.Pair;

import java.util.List;

/**
 * {@code AbstractCompositeLoss} is a {@link Loss} class that can combine other {@link Loss}es
 * together to make a larger loss.
 *
 * 

The AbstractCompositeLoss is designed to be extended for more complicated composite losses. * For simpler use cases, consider using the {@link SimpleCompositeLoss}. */ public abstract class AbstractCompositeLoss extends Loss { protected List components; /** * Constructs a composite loss with the given name. * * @param name the display name of the loss */ public AbstractCompositeLoss(String name) { super(name); } /** * Returns the inputs to computing the loss for a component loss. * * @param componentIndex the index of the component loss * @param labels the label input to the composite loss * @param predictions the predictions input to the composite loss * @return a pair of the (labels, predictions) inputs to the component loss */ protected abstract Pair inputForComponent( int componentIndex, NDList labels, NDList predictions); /** * Returns the component losses that make up the composite loss. * * @return the component losses that make up the composite loss */ public List getComponents() { return components; } /** {@inheritDoc} */ @Override public NDArray evaluate(NDList labels, NDList predictions) { NDArray[] lossComponents = new NDArray[components.size()]; for (int i = 0; i < components.size(); i++) { Pair inputs = inputForComponent(i, labels, predictions); lossComponents[i] = components.get(i).evaluate(inputs.getKey(), inputs.getValue()); } return NDArrays.add(lossComponents); } /** {@inheritDoc} */ @Override public void addAccumulator(String key) { for (Loss component : components) { component.addAccumulator(key); } } /** {@inheritDoc} */ @Override public void updateAccumulators(String[] keys, NDList labels, NDList predictions) { for (int i = 0; i < components.size(); i++) { Pair inputs = inputForComponent(i, labels, predictions); components.get(i).updateAccumulators(keys, inputs.getKey(), inputs.getValue()); } } /** {@inheritDoc} */ @Override public void resetAccumulator(String key) { for (Loss component : components) { component.resetAccumulator(key); } } /** {@inheritDoc} */ @Override public float getAccumulator(String key) { return (float) components.stream().mapToDouble(component -> component.getAccumulator(key)).sum(); } }





© 2015 - 2025 Weber Informatics LLC | Privacy Policy