ai.djl.training.loss.YOLOv3Loss Maven / Gradle / Ivy
The newest version!
/*
* Copyright 2022 Amazon.com, Inc. or its affiliates. All Rights Reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License"). You may not use this file except in compliance
* with the License. A copy of the License is located at
*
* http://aws.amazon.com/apache2.0/
*
* or in the "license" file accompanying this file. This file is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES
* OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions
* and limitations under the License.
*/
package ai.djl.training.loss;
import ai.djl.ndarray.NDArray;
import ai.djl.ndarray.NDArrays;
import ai.djl.ndarray.NDList;
import ai.djl.ndarray.NDManager;
import ai.djl.ndarray.index.NDIndex;
import ai.djl.ndarray.types.DataType;
import ai.djl.ndarray.types.Shape;
import ai.djl.nn.Activation;
/**
* {@code YOLOv3Loss} is an implementation of {@link Loss}. It is used to compute the loss while
* training a YOLOv3 model for object detection. It involves computing the targets given the
* generated anchors, labels and predictions, and then computing the sum of class predictions and
* bounding box predictions.
*/
public final class YOLOv3Loss extends Loss {
// TODO: currently not finished, still have some bugs inside and it can only be trained with
// PyTorch Engine
/*
PRESETANCHORS shapes come from the K-means clustering of COCO dataset, which image size is 416*416
it can be reshaped into any shape like 256*256, just multiply each value with 256/416
*/
private static final float[] PRESETANCHORS = {
116, 90, 156, 198, 373, 326,
30, 61, 62, 45, 59, 119,
10, 13, 16, 30, 33, 23
};
private float[] anchors;
private int numClasses;
private int boxAttr;
private Shape inputShape;
private float ignoreThreshold;
private NDManager manager;
private static final float EPSILON = 1e-7f;
private YOLOv3Loss(Builder builder) {
super(builder.name);
this.anchors = builder.anchorsArray;
this.numClasses = builder.numClasses;
this.boxAttr = builder.numClasses + 5; // 5 for x,y,h,w,c
this.inputShape = builder.inputShape;
this.ignoreThreshold = builder.ignoreThreshold;
}
/**
* Gets the preset anchors of YoloV3.
*
* @return the preset anchors of YoloV3
*/
public static float[] getPresetAnchors() {
return PRESETANCHORS.clone();
}
/**
* Make the value of given NDArray between tMin and tMax.
*
* @param tList the given NDArray
* @param tMin the min value
* @param tMax the max value
* @return a NDArray where values are set between tMin and tMax
*/
public NDArray clipByTensor(NDArray tList, float tMin, float tMax) {
NDArray result = tList.gte(tMin).mul(tList).add(tList.lt(tMin).mul(tMin));
result = result.lte(tMax).mul(result).add(result.gt(tMax).mul(tMax));
return result;
}
/**
* Calculates the MSELoss between prediction and target.
*
* @param prediction the prediction array
* @param target the target array
* @return the MSELoss between prediction and target
*/
public NDArray mseLoss(NDArray prediction, NDArray target) {
return prediction.sub(target).pow(2);
}
/**
* Calculates the BCELoss between prediction and target.
*
* @param prediction the prediction array
* @param target the target array
* @return the BCELoss between prediction and target
*/
public NDArray bceLoss(NDArray prediction, NDArray target) {
prediction = clipByTensor(prediction, EPSILON, (float) (1.0 - EPSILON));
return prediction
.log()
.mul(target)
.add(prediction.mul(-1).add(1).log().mul(target.mul(-1).add(1)))
.mul(-1);
}
/** {@inheritDoc} */
@Override
public NDArray evaluate(NDList labels, NDList predictions) {
manager = predictions.getManager();
/*
three outputs in total
NDArray out0 = predictions.get(0), //Shape = (batchSize * 75 * 13 * 13) 75 = 3*(20+5)
out1 = predictions.get(1), //Shape = (batchSize * 75 * 26 * 26)
out2 = predictions.get(2); //Shape = (batchSize * 75 * 52 * 52)
*/
NDArray[] lossComponents = new NDArray[3];
for (int i = 0; i < 3; i++) {
lossComponents[i] = evaluateOneOutput(i, predictions.get(i), labels.singletonOrThrow());
}
// calculate the final loss
return NDArrays.add(lossComponents);
}
/**
* Computes the Loss for one outputLayer.
*
* @param componentIndex which outputLayer does current input represent. the shape should be
* (13*13,26*26,52*52)
* @param input one prediction layer of YOLOv3
* @param labels target labels. Must contain (offsetLabels, masks, classlabels)
* @return the total loss of a outputLayer
*/
public NDArray evaluateOneOutput(int componentIndex, NDArray input, NDArray labels) {
int batchSize = (int) input.getShape().get(0);
int inW = (int) input.getShape().get(2);
int inH = (int) input.getShape().get(3);
NDArray prediction =
input.reshape(batchSize, 3, boxAttr, inW, inH)
.transpose(1, 0, 3, 4, 2); // reshape into (3,batchSize,inW,inH,attrs)
// the prediction value of x,y,w,h which shape should be (3,batchSize,inW,inH)
NDArray x = Activation.sigmoid(prediction.get("...,0"));
NDArray y = Activation.sigmoid(prediction.get("...,1"));
NDArray w = prediction.get("...,2");
NDArray h = prediction.get("...,3");
// Confidence of whether there is an object and conditional probability of each class
// it should be reshaped into (batchSize,3)
NDArray conf = Activation.sigmoid(prediction.get("...,4")).transpose(1, 0, 2, 3);
NDArray predClass = Activation.sigmoid(prediction.get("...,5:")).transpose(1, 0, 2, 3, 4);
// get an NDList of groundTruth which contains boxLossScale and groundTruth
NDList truthList = getTarget(labels, inH, inW);
/*
boxLossScale shape should be: (batchSize,3,inW,inH)
groundTruth shape should be: (3,batchSize,inW,inH,boxAttr)
*/
NDArray boxLossScale = truthList.get(0).transpose(1, 0, 2, 3);
NDArray groundTruth = truthList.get(1);
// iou shape should be: (batchSize,3 ,inW,inH)
NDArray iou =
calculateIOU(x, y, groundTruth.get("...,0:4"), componentIndex)
.transpose(1, 0, 2, 3);
// get noObjMask and objMask
NDArray noObjMask =
NDArrays.where(
iou.lte(ignoreThreshold), manager.ones(iou.getShape()), manager.create(0f));
NDArray objMask = iou.argMax(1).oneHot(3).transpose(0, 3, 1, 2);
objMask =
NDArrays.where(
iou.gte(ignoreThreshold / 2),
objMask,
manager.zeros(objMask.getShape())); // to get rid of wrong ones
noObjMask = NDArrays.where(objMask.eq(1f), manager.zeros(noObjMask.getShape()), noObjMask);
NDArray xTrue = groundTruth.get("...,0");
NDArray yTrue = groundTruth.get("...,1");
NDArray wTrue = groundTruth.get("...,2");
NDArray hTrue = groundTruth.get("...,3");
NDArray classTrue = groundTruth.get("...,4:").transpose(1, 0, 2, 3, 4);
NDArray widths =
manager.create(
new float[] {
anchors[componentIndex * 6],
anchors[componentIndex * 6 + 2],
anchors[componentIndex * 6 + 4]
})
.div(inputShape.get(0));
NDArray heights =
manager.create(
new float[] {
anchors[componentIndex * 6 + 1],
anchors[componentIndex * 6 + 3],
anchors[componentIndex * 6 + 5]
})
.div(inputShape.get(1));
// three loss parts: box Loss, confidence Loss, and class Loss
NDArray boxLoss =
objMask.mul(boxLossScale)
.mul(
NDArrays.add(
xTrue.sub(x).pow(2),
yTrue.sub(y).pow(2),
wTrue.sub(
w.exp()
.mul(
widths.broadcast(
inH,
inW,
batchSize,
3)
.transpose(
3,
2,
1,
0)))
.pow(2),
hTrue.sub(
h.exp()
.mul(
heights.broadcast(
inH,
inW,
batchSize,
3)
.transpose(
3,
2,
1,
0)))
.pow(2))
.transpose(1, 0, 2, 3))
.sum();
NDArray confLoss =
objMask.mul(
conf.add(EPSILON)
.log()
.mul(-1)
.add(bceLoss(predClass, classTrue).sum(new int[] {4})))
.sum();
NDArray noObjLoss = noObjMask.mul(conf.mul(-1).add(1 + EPSILON).log().mul(-1)).sum();
return boxLoss.add(confLoss).add(noObjLoss).div(batchSize);
}
/**
* Gets target NDArray for a given evaluator.
*
* @param labels the true labels
* @param inH the height of current layer
* @param inW the width of current layer
* @return an NDList of {boxLossScale and groundTruth}
*/
public NDList getTarget(NDArray labels, int inH, int inW) {
int batchSize = (int) labels.size(0);
// the loss Scale of a box, used to punctuate small boxes
NDList boxLossComponents = new NDList();
// the groundTruth of a true object in pictures
NDList groundTruthComponents = new NDList();
// Shape of labels:(batchSize,objectNum,5)
for (int batch = 0; batch < batchSize; batch++) {
if (labels.get(batch).size(0) == 0) {
continue; // no object in current picture
}
NDArray boxLoss = manager.zeros(new Shape(inW, inH), DataType.FLOAT32);
NDArray groundTruth = manager.zeros(new Shape(inW, inH, boxAttr - 1), DataType.FLOAT32);
NDArray picture = labels.get(batch);
// the shape should be (objectNums,5)
NDArray xgt = picture.get("...,1").add(picture.get("...,3").div(2)).mul(inW);
// Center of x should be X value in labels and add half of the width and multiplies the
// input width to get which grid cell it's in
NDArray ygt = picture.get("...,2").add(picture.get("...,4").div(2)).mul(inH);
// Center of y is the same as well
NDArray wgt = picture.get("...,3");
// the width of the ground truth box
NDArray hgt = picture.get("...,4");
// the height of the ground truth box
// we should transform the presentation of true class, like
// [[0],[1],[2]]->[[1,0,0,...0],[0,1,0,...,0],[0,0,1,...,0]]
NDArray objectClass = picture.get("...,0");
objectClass = objectClass.oneHot(numClasses);
NDArray curLabel = labels.get(batch); // curLabel shape:(objectNum,5)
int objectNum = (int) curLabel.size(0);
for (int i = 0; i < objectNum; i++) {
// for each object, the middle of the object(x and y) should be in one grid cell of
// 13*13
// the tx and ty should indicate the grid cell and bx and by should indicate the
// movement from top-left of the grid cell
int tx = (int) xgt.get(i).getFloat();
int ty = (int) ygt.get(i).getFloat();
float bx = xgt.get(i).getFloat() - tx;
float by = ygt.get(i).getFloat() - ty;
String index = tx + "," + ty;
// set groundTruth
groundTruth.set(new NDIndex(index + ",0"), bx);
groundTruth.set(new NDIndex(index + ",1"), by);
groundTruth.set(new NDIndex(index + ",2"), wgt.getFloat(i));
groundTruth.set(new NDIndex(index + ",3"), hgt.getFloat(i));
groundTruth.set(new NDIndex(index + ",4:"), objectClass.get(i));
// set boxLoss
boxLoss.set(new NDIndex(index), 2 - wgt.getFloat(i) * hgt.getFloat(i));
}
boxLossComponents.add(boxLoss);
groundTruthComponents.add(groundTruth);
}
NDArray boxLossScale = NDArrays.stack(boxLossComponents).broadcast(3, batchSize, inW, inH);
NDArray groundTruth =
NDArrays.stack(groundTruthComponents)
.broadcast(3, batchSize, inW, inH, boxAttr - 1);
return new NDList(boxLossScale, groundTruth);
}
/**
* Calculates the IOU between priori Anchors and groundTruth.
*
* @param predx the tx value of prediction
* @param predy the ty value of prediction
* @param groundTruth the groundTruth value of labels
* @param componentIndex the current component Index
* @return an NDArray of IOU
*/
public NDArray calculateIOU(
NDArray predx, NDArray predy, NDArray groundTruth, int componentIndex) {
int inW = (int) predx.getShape().get(2);
int inH = (int) predx.getShape().get(3);
int strideW = (int) inputShape.get(0) / inW;
int strideH = (int) inputShape.get(1) / inH;
NDList iouComponent = new NDList();
// shape of predx, predy should all be (3,batchSize,inW,inH)
// shape of groundTruth should be (3,batchSize,inW,inH,4)
for (int i = 0; i < 3; i++) {
NDArray curPredx = predx.get(i);
NDArray curPredy = predy.get(i);
float width = anchors[componentIndex * 6 + 2 * i] / strideW;
float height = anchors[componentIndex * 6 + 2 * i + 1] / strideH;
NDArray predLeft = curPredx.sub(width / 2);
NDArray predRight = curPredx.add(width / 2);
NDArray predTop = curPredy.sub(height / 2);
NDArray predBottom = curPredy.add(height / 2);
NDArray truth = groundTruth.get(i);
NDArray trueLeft = truth.get("...,0").sub(truth.get("...,2").mul(inW).div(2));
NDArray trueRight = truth.get("...,0").add(truth.get("...,2").mul(inW).div(2));
NDArray trueTop = truth.get("...,1").sub(truth.get("...,3").mul(inH).div(2));
NDArray trueBottom = truth.get("...,1").add(truth.get("...,3").mul(inH).div(2));
NDArray left = NDArrays.maximum(predLeft, trueLeft);
NDArray right = NDArrays.minimum(predRight, trueRight);
NDArray top = NDArrays.maximum(predTop, trueTop);
NDArray bottom = NDArrays.minimum(predBottom, trueBottom);
NDArray inter = right.sub(left).mul(bottom.sub(top));
NDArray union =
truth.get("...,2")
.mul(inW)
.mul(truth.get("...,3").mul(inH))
.add(width * height)
.sub(inter)
.add(EPSILON); // should not be divided by zero
iouComponent.add(inter.div(union));
}
return NDArrays.stack(iouComponent);
}
/**
* Creates a new builder to build a {@link YOLOv3Loss}.
*
* @return a new builder;
*/
public static Builder builder() {
return new Builder();
}
/** The Builder to construct a {@link YOLOv3Loss} object. */
public static class Builder {
private String name = "YOLOv3Loss";
private float[] anchorsArray = PRESETANCHORS;
private int numClasses = 20;
private Shape inputShape = new Shape(419, 419);
private float ignoreThreshold = 0.5f;
/**
* Sets the loss name of YoloV3Loss.
*
* @param name the name of loss function
* @return this {@code Builder}
*/
public Builder setName(String name) {
this.name = name;
return this;
}
/**
* Sets the preset anchors for YoloV3.
*
* @param anchorsArray the anchors in float array
* @return this {@code Builder}
*/
public Builder setAnchorsArray(float[] anchorsArray) {
if (anchorsArray.length != PRESETANCHORS.length) {
throw new IllegalArgumentException(
String.format(
"setAnchorsArray requires anchors of length %d, but was given"
+ " filters of length %d instead",
PRESETANCHORS.length, anchorsArray.length));
}
this.anchorsArray = anchorsArray;
return this;
}
/**
* Sets the number of total classes.
*
* @param numClasses the number of total classes
* @return this {@code Builder}
*/
public Builder setNumClasses(int numClasses) {
this.numClasses = numClasses;
return this;
}
/**
* Sets the shape of the input picture.
*
* @param inputShape the shape of input picture.
* @return this {@code Builder}
*/
public Builder setInputShape(Shape inputShape) {
this.inputShape = inputShape;
return this;
}
/**
* Sets the ignoreThreshold for iou to check if we think it detects a picture.
*
* @param ignoreThreshold the ignore threshold
* @return this {@code Builder}
*/
public Builder optIgnoreThreshold(float ignoreThreshold) {
this.ignoreThreshold = ignoreThreshold;
return this;
}
/**
* Builds a {@link YOLOv3Loss} instance.
*
* @return a {@link YOLOv3Loss} instance.
*/
public YOLOv3Loss build() {
return new YOLOv3Loss(this);
}
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy