All Downloads are FREE. Search and download functionalities are using the official Maven repository.

ai.djl.training.optimizer.Sgd Maven / Gradle / Ivy

The newest version!
/*
 * Copyright 2019 Amazon.com, Inc. or its affiliates. All Rights Reserved.
 *
 * Licensed under the Apache License, Version 2.0 (the "License"). You may not use this file except in compliance
 * with the License. A copy of the License is located at
 *
 * http://aws.amazon.com/apache2.0/
 *
 * or in the "license" file accompanying this file. This file is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES
 * OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions
 * and limitations under the License.
 */
package ai.djl.training.optimizer;

import ai.djl.Device;
import ai.djl.ndarray.NDArray;
import ai.djl.ndarray.NDList;
import ai.djl.ndarray.internal.NDArrayEx;
import ai.djl.training.tracker.ParameterTracker;

import java.util.Map;
import java.util.Objects;
import java.util.concurrent.ConcurrentHashMap;

/**
 * {@code Sgd} is a Stochastic Gradient Descent (SGD) optimizer.
 *
 * 

If momentum is not set, it updates weights using the following update function:
* \( weight = weight - learning_rate * (gradient + wd * weight) \). * *

If momentum is set, it updates weights using the following update function:
* \( state = momentum * state + learning_rate * gradient \)
* \( weight -= state \)
* Momentum update has better convergence rates on neural networks. * * @see The D2L chapter on SGD */ public class Sgd extends Optimizer { private ParameterTracker learningRateTracker; private float momentum; private Map> momentumStates; /** * Creates a new instance of {@code Sgd}. * * @param builder the builder to create a new instance of {@link Sgd} */ protected Sgd(Builder builder) { super(builder); learningRateTracker = builder.learningRateTracker; momentum = builder.momentum; momentumStates = new ConcurrentHashMap<>(); } /** {@inheritDoc} */ @Override public void update(String parameterId, NDArray weight, NDArray grad) { // TODO: Support Mixed precision Sparse float weightDecay = getWeightDecay(); float learningRate = learningRateTracker.getNewValue(parameterId, updateCount(parameterId)); NDList inputs; if (momentum != 0f) { NDArray state = withDefaultState( momentumStates, parameterId, weight.getDevice(), k -> weight.zerosLike()); inputs = new NDList(weight, grad, state); } else { inputs = new NDList(weight, grad); } NDList weights = new NDList(weight); NDArrayEx ex = weight.getNDArrayInternal(); ex.sgdUpdate( inputs, weights, learningRate, weightDecay, rescaleGrad, clipGrad, momentum, true); } /** The Builder to construct an {@link Sgd} object. */ public static final class Builder extends OptimizerBuilder { ParameterTracker learningRateTracker; float momentum; Builder() {} /** {@inheritDoc} */ @Override protected Builder self() { return this; } /** * Sets the {@link ParameterTracker} for this optimizer. * * @param learningRateTracker the {@link ParameterTracker} to be set * @return this {@code Builder} */ public Builder setLearningRateTracker(ParameterTracker learningRateTracker) { this.learningRateTracker = learningRateTracker; return this; } /** * Sets the momentum for {@link Sgd}. * * @param momentum the value of momentum * @return this {@code Builder} */ public Builder optMomentum(float momentum) { this.momentum = momentum; return this; } /** * Builds a {@link Sgd} block. * * @return the {@link Sgd} block */ public Sgd build() { Objects.requireNonNull(learningRateTracker, "No lrTracker set"); return new Sgd(this); } } }





© 2015 - 2025 Weber Informatics LLC | Privacy Policy