ai.djl.translate.PaddingStackBatchifier Maven / Gradle / Ivy
The newest version!
/*
* Copyright 2020 Amazon.com, Inc. or its affiliates. All Rights Reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License"). You may not use this file except in compliance
* with the License. A copy of the License is located at
*
* http://aws.amazon.com/apache2.0/
*
* or in the "license" file accompanying this file. This file is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES
* OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions
* and limitations under the License.
*/
package ai.djl.translate;
import ai.djl.ndarray.NDArray;
import ai.djl.ndarray.NDList;
import ai.djl.ndarray.NDManager;
import ai.djl.ndarray.index.NDIndex;
import ai.djl.ndarray.types.Shape;
import java.util.ArrayList;
import java.util.List;
/**
* The padding stack batchifier is a {@link StackBatchifier} that also pads elements to reach the
* same length.
*/
public final class PaddingStackBatchifier implements Batchifier {
private static final long serialVersionUID = 1L;
@SuppressWarnings("serial")
private List arraysToPad;
@SuppressWarnings("serial")
private List dimsToPad;
private transient List paddingSuppliers;
@SuppressWarnings("serial")
private List paddingSizes;
private boolean includeValidLengths;
private PaddingStackBatchifier(Builder builder) {
arraysToPad = builder.arraysToPad;
dimsToPad = builder.dimsToPad;
paddingSuppliers = builder.paddingSuppliers;
paddingSizes = builder.paddingSizes;
includeValidLengths = builder.includeValidLengths;
}
/** {@inheritDoc} */
@Override
public NDList batchify(NDList[] inputs) {
NDList validLengths = new NDList(inputs.length);
NDManager manager = inputs[0].get(0).getManager();
for (int i = 0; i < arraysToPad.size(); i++) {
int arrayIndex = arraysToPad.get(i);
int dimIndex = dimsToPad.get(i);
NDArray padding = paddingSuppliers.get(i).get(manager);
long paddingSize = paddingSizes.get(i);
long maxSize = findMaxSize(inputs, arrayIndex, dimIndex);
if (paddingSize != -1 && maxSize > paddingSize) {
throw new IllegalArgumentException(
"The batchifier padding size is too small " + maxSize + " " + paddingSize);
}
maxSize = Math.max(maxSize, paddingSize);
long[] arrayValidLengths = padArrays(inputs, arrayIndex, dimIndex, padding, maxSize);
validLengths.add(manager.create(arrayValidLengths));
}
NDList result = Batchifier.STACK.batchify(inputs);
if (includeValidLengths) {
result.addAll(validLengths);
}
return result;
}
/** {@inheritDoc} */
@Override
public NDList[] unbatchify(NDList inputs) {
if (!includeValidLengths) {
return Batchifier.STACK.unbatchify(inputs);
}
NDList validLengths =
new NDList(inputs.subList(inputs.size() - arraysToPad.size(), inputs.size()));
inputs = new NDList(inputs.subList(0, inputs.size() - arraysToPad.size()));
NDList[] split = Batchifier.STACK.unbatchify(inputs);
for (int i = 0; i < split.length; i++) {
NDList arrays = split[i];
for (int j = 0; j < arraysToPad.size(); j++) {
long validLength = validLengths.get(j).getLong(i);
int arrayIndex = arraysToPad.get(j);
NDArray dePadded =
arrays.get(arrayIndex)
.get(NDIndex.sliceAxis(dimsToPad.get(j) - 1, 0, validLength));
arrays.set(arrayIndex, dePadded);
}
}
return split;
}
/** {@inheritDoc} */
@Override
public NDList[] split(NDList list, int numOfSlices, boolean evenSplit) {
if (!includeValidLengths) {
return Batchifier.STACK.split(list, numOfSlices, evenSplit);
}
NDList validLengths =
new NDList(list.subList(list.size() - arraysToPad.size(), list.size()));
list = new NDList(list.subList(0, list.size() - arraysToPad.size()));
NDList[] split = Batchifier.STACK.split(list, numOfSlices, evenSplit);
long sliceSize = split[0].get(0).getShape().get(0);
long totalSize = list.get(0).getShape().get(0);
for (int i = 0; i < split.length; i++) {
// TODO: The padding required may not be the same for all splits. For smaller splits,
// we can remove some extra padding.
NDList arrays = split[i];
for (int j = 0; j < arraysToPad.size(); j++) {
long min = i * sliceSize;
long max = Math.min((i + 1) * sliceSize, totalSize);
NDArray splitValidLenghts = validLengths.get(j).get(NDIndex.sliceAxis(0, min, max));
arrays.add(splitValidLenghts);
}
}
return split;
}
/**
* Finds the maximum size for a particular array/dimension in a batch of inputs (which can be
* padded to equalize their sizes).
*
* @param inputs the batch of inputs
* @param arrayIndex the array (for each NDList in the batch)
* @param dimIndex for the array in each NDList in the batch
* @return the maximum size
*/
public static long findMaxSize(NDList[] inputs, int arrayIndex, int dimIndex) {
long maxSize = -1;
for (NDList input : inputs) {
NDArray array = input.get(arrayIndex);
maxSize = Math.max(maxSize, array.getShape().get(dimIndex));
}
return maxSize;
}
/**
* Pads the arrays at a particular dimension to all have the same size (updating inputs in
* place).
*
* @param inputs the batch of inputs
* @param arrayIndex the array (for each NDList in the batch)
* @param dimIndex for the array in each NDList in the batch
* @param padding the padding to use. Say you have a batch of arrays of Shape(10, ?, 3) and you
* are padding the "?" dimension. There are two padding modes:
*
* - If you give padding of Shape(1, 3) (same dimensionality as required), it will be
* repeated with {@link NDArray#repeat(long)} as necessary
*
- If you give padding of Shape(3) or Shape(0) (smaller dimensionality as required),
* it will be broadcasted with {@link NDArray#broadcast(Shape)} to reach the full
* required Shape(?, 3)
*
*
* @param maxSize the size that each array will be padded to in that dimension. In the example
* above, the padding to be applied to the "?" dimension.
* @return the original valid length for each dimension in the batch (same length as
* inputs.length). The inputs will be updated in place.
*/
public static long[] padArrays(
NDList[] inputs, int arrayIndex, int dimIndex, NDArray padding, long maxSize) {
long[] arrayValidLengths = new long[inputs.length];
for (int i = 0; i < inputs.length; i++) {
NDArray array = inputs[i].get(arrayIndex);
String arrayName = array.getName();
long validLength = array.getShape().get(dimIndex);
if (validLength < maxSize) {
// Number of dimensions the padding must be
int dimensionsRequired =
array.getShape().dimension() - padding.getShape().dimension();
NDArray paddingArray;
if (dimensionsRequired == 0) {
paddingArray =
padding.repeat(
Shape.update(
array.getShape(), dimIndex, maxSize - validLength));
} else if (dimensionsRequired > 0) {
paddingArray =
padding.broadcast(
Shape.update(
array.getShape(), dimIndex, maxSize - validLength));
} else {
throw new IllegalArgumentException(
"The padding must be <="
+ dimensionsRequired
+ " dimensions, but found "
+ padding.getShape().dimension());
}
array = array.concat(paddingArray.toType(array.getDataType(), false), dimIndex);
}
// keep input name
array.setName(arrayName);
inputs[i].set(arrayIndex, array);
arrayValidLengths[i] = validLength;
}
return arrayValidLengths;
}
/**
* Returns a {@link PaddingStackBatchifier.Builder}.
*
* @return a {@link PaddingStackBatchifier.Builder}
*/
public static PaddingStackBatchifier.Builder builder() {
return new Builder();
}
/** Builder to build a {@link PaddingStackBatchifier}. */
public static final class Builder {
private List arraysToPad;
private List dimsToPad;
private List paddingSuppliers;
private List paddingSizes;
private boolean includeValidLengths;
private Builder() {
arraysToPad = new ArrayList<>();
dimsToPad = new ArrayList<>();
paddingSuppliers = new ArrayList<>();
paddingSizes = new ArrayList<>();
}
/**
* Sets whether to include the valid lengths (length of non-padded data) for each array.
*
* @param includeValidLengths true to include valid lengths
* @return this builder
*/
public Builder optIncludeValidLengths(boolean includeValidLengths) {
this.includeValidLengths = includeValidLengths;
return this;
}
/**
* Adds a new dimension to be padded in the input {@link NDList}.
*
* @param array which array in the {@link NDList} to pad
* @param dim which dimension in the array to pad
* @param supplier a supplier that produces the padding array. The padding array shape
* should include both the batch and a 1 for the padded dimension. For batch array shape
* NTC, the padding shape should be N x 1 x C
* @return this builder
*/
public Builder addPad(int array, int dim, NDArraySupplier supplier) {
return addPad(array, dim, supplier, -1);
}
/**
* Adds a new dimension to be padded in the input {@link NDList}.
*
* @param array which array in the {@link NDList} to pad
* @param dim which dimension in the array to pad
* @param supplier a supplier that produces the padding array. The padding array shape
* should include both the batch and a 1 for the padded dimension. For batch array shape
* NTC, the padding shape should be N x 1 x C
* @param paddingSize the minimum padding size to use. All sequences to pad must be less
* than this size
* @return this builder
*/
public Builder addPad(int array, int dim, NDArraySupplier supplier, int paddingSize) {
arraysToPad.add(array);
dimsToPad.add(dim);
paddingSuppliers.add(supplier);
paddingSizes.add(paddingSize);
return this;
}
/**
* Builds the {@link PaddingStackBatchifier}.
*
* @return the constructed {@link PaddingStackBatchifier}
*/
public PaddingStackBatchifier build() {
return new PaddingStackBatchifier(this);
}
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy