ai.djl.translate.Translator Maven / Gradle / Ivy
/*
* Copyright 2019 Amazon.com, Inc. or its affiliates. All Rights Reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License"). You may not use this file except in compliance
* with the License. A copy of the License is located at
*
* http://aws.amazon.com/apache2.0/
*
* or in the "license" file accompanying this file. This file is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES
* OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions
* and limitations under the License.
*/
package ai.djl.translate;
import ai.djl.inference.Predictor;
import ai.djl.ndarray.NDList;
import java.util.ArrayList;
import java.util.List;
/**
* The {@code Translator} interface provides model pre-processing and postprocessing functionality.
*
* Users can use this in {@link Predictor} with input and output objects specified. The
* recommended flow is to use the Translator to translate only a single data item at a time ({@link
* ai.djl.training.dataset.Record}) rather than a Batch. For example, the input parameter would then
* be {@code Image} rather than {@code Image[]}. The {@link ai.djl.training.dataset.Record}s will
* then be combined using a {@link Batchifier}. If it is easier in your use case to work with
* batches directly or your model uses records instead of batches, you can use the {@link
* NoBatchifyTranslator}.
*
*
The following is an example of processing an image and creating classification output:
*
*
* private static final class MyTranslator implements Translator<Image, Classification> {
*
* private int imageWidth;
* private int imageHeight;
*
* public MyTranslator(int imageWidth, int imageHeight) {
* this.imageWidth = imageWidth;
* this.imageHeight = imageHeight;
* }
*
* @Override
* public NDList processInput(TranslatorContext ctx, Image input) {
* NDArray imageND = input.toNDArray(ctx.getNDManager());
* return new NDList(NDImageUtils.resize(imageND, imageWidth, imageHeight);
* }
*
* @Override
* public Classification processOutput(TranslatorContext ctx, NDList list) throws TranslateException {
* Model model = ctx.getModel();
* NDArray array = list.get(0).at(0);
* NDArray sorted = array.argSort(-1, false);
* NDArray top = sorted.at(0);
*
* float[] probabilities = array.toFloatArray();
* int topIndex = top.toIntArray()[0];
*
* String[] synset;
* try {
* synset = model.getArtifact("synset.txt", MyTranslator::loadSynset);
* } catch (IOException e) {
* throw new TranslateException(e);
* }
* return new Classification(synset[topIndex], probabilities[topIndex]);
* }
*
* private static String[] loadSynset(InputStream is) {
* ...
* }
* }
*
*
* @param the input type
* @param the output type
*/
public interface Translator extends PreProcessor, PostProcessor {
/**
* Returns the {@link Batchifier}.
*
* @return the {@link Batchifier}
*/
default Batchifier getBatchifier() {
return Batchifier.STACK;
}
/**
* Batch processes the inputs and converts it to NDList.
*
* @param ctx the toolkit for creating the input NDArray
* @param inputs a list of the input object
* @return the {@link NDList} after pre-processing
* @throws Exception if an error occurs during processing input
*/
@SuppressWarnings("PMD.SignatureDeclareThrowsException")
default NDList batchProcessInput(TranslatorContext ctx, List inputs) throws Exception {
NDList[] preprocessed = new NDList[inputs.size()];
int index = 0;
for (I input : inputs) {
preprocessed[index++] = processInput(ctx, input);
}
return getBatchifier().batchify(preprocessed);
}
/**
* Batch processes the output NDList to the corresponding output objects.
*
* @param ctx the toolkit used for post-processing
* @param list the output NDList after inference, usually immutable in engines like
* PyTorch. @see Issue 1774
* @return a list of the output object of expected type
* @throws Exception if an error occurs during processing output
*/
@SuppressWarnings("PMD.SignatureDeclareThrowsException")
default List batchProcessOutput(TranslatorContext ctx, NDList list) throws Exception {
NDList[] unbatched = getBatchifier().unbatchify(list);
List outputs = new ArrayList<>(unbatched.length);
for (NDList output : unbatched) {
outputs.add(processOutput(ctx, output));
}
return outputs;
}
/**
* Prepares the translator with the manager and model to use.
*
* @param ctx the context for the {@code Predictor}.
* @throws Exception if there is an error for preparing the translator
*/
@SuppressWarnings("PMD.SignatureDeclareThrowsException")
default void prepare(TranslatorContext ctx) throws Exception {}
/**
* Returns possible {@link TranslatorOptions} that can be built using this {@link Translator}.
*
* @return possible options or null if not defined
*/
default TranslatorOptions getExpansions() {
return null;
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy