ai.djl.util.cuda.CudaUtils Maven / Gradle / Ivy
The newest version!
/*
* Copyright 2019 Amazon.com, Inc. or its affiliates. All Rights Reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License"). You may not use this file except in compliance
* with the License. A copy of the License is located at
*
* http://aws.amazon.com/apache2.0/
*
* or in the "license" file accompanying this file. This file is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES
* OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions
* and limitations under the License.
*/
package ai.djl.util.cuda;
import ai.djl.Device;
import ai.djl.engine.EngineException;
import ai.djl.util.Utils;
import com.sun.jna.Native;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import java.io.File;
import java.io.IOException;
import java.io.InputStream;
import java.lang.management.MemoryUsage;
import java.util.ArrayList;
import java.util.List;
import java.util.Locale;
import java.util.regex.Pattern;
/** A class containing CUDA utility methods. */
public final class CudaUtils {
private static final Logger logger = LoggerFactory.getLogger(CudaUtils.class);
private static final CudaLibrary LIB = loadLibrary();
private static String[] gpuInfo;
private static boolean logging = true;
private CudaUtils() {}
/**
* Gets whether CUDA runtime library is in the system.
*
* @return {@code true} if CUDA runtime library is in the system
*/
public static boolean hasCuda() {
return getGpuCount() > 0;
}
/**
* Returns the number of GPUs available in the system.
*
* @return the number of GPUs available in the system
*/
@SuppressWarnings("PMD.NonThreadSafeSingleton")
public static int getGpuCount() {
if (Boolean.getBoolean("ai.djl.util.cuda.fork")) {
if (gpuInfo == null) {
gpuInfo = execute(-1); // NOPMD
}
try {
return Integer.parseInt(gpuInfo[0]);
} catch (NumberFormatException e) {
logger.warn("Unexpected output: {}", gpuInfo[0], e);
return 0;
}
}
if (LIB == null) {
return 0;
}
int[] count = new int[1];
int result = LIB.cudaGetDeviceCount(count);
switch (result) {
case 0:
return count[0];
case CudaLibrary.ERROR_NO_DEVICE:
if (logging) {
logger.debug(
"No GPU device found: {} ({})", LIB.cudaGetErrorString(result), result);
}
return 0;
case CudaLibrary.INITIALIZATION_ERROR:
case CudaLibrary.INSUFFICIENT_DRIVER:
case CudaLibrary.ERROR_NOT_PERMITTED:
default:
if (logging) {
logger.warn(
"Failed to detect GPU count: {} ({})",
LIB.cudaGetErrorString(result),
result);
}
return 0;
}
}
/**
* Returns the version of CUDA runtime.
*
* @return the version of CUDA runtime
*/
@SuppressWarnings("PMD.NonThreadSafeSingleton")
public static int getCudaVersion() {
if (Boolean.getBoolean("ai.djl.util.cuda.fork")) {
if (gpuInfo == null) {
gpuInfo = execute(-1);
}
int version = Integer.parseInt(gpuInfo[1]);
if (version == -1) {
throw new IllegalArgumentException("No cuda device found.");
}
return version;
}
if (LIB == null) {
throw new IllegalStateException("No cuda library is loaded.");
}
int[] version = new int[1];
int result = LIB.cudaRuntimeGetVersion(version);
checkCall(result);
return version[0];
}
/**
* Returns the version string of CUDA runtime.
*
* @return the version string of CUDA runtime
*/
public static String getCudaVersionString() {
int version = getCudaVersion();
int major = version / 1000;
int minor = (version / 10) % 10;
return String.format(Locale.ROOT, "%02d", major) + minor;
}
/**
* Returns the CUDA compute capability.
*
* @param device the GPU {@link Device} to retrieve
* @return the CUDA compute capability
*/
public static String getComputeCapability(int device) {
if (Boolean.getBoolean("ai.djl.util.cuda.fork")) {
if (gpuInfo == null) { // NOPMD
gpuInfo = execute(-1);
}
if (device >= gpuInfo.length - 2) {
throw new IllegalArgumentException("Invalid device: " + device);
}
return gpuInfo[device + 2];
}
if (LIB == null) {
throw new IllegalStateException("No cuda library is loaded.");
}
int attrComputeCapabilityMajor = 75;
int attrComputeCapabilityMinor = 76;
int[] major = new int[1];
int[] minor = new int[1];
checkCall(LIB.cudaDeviceGetAttribute(major, attrComputeCapabilityMajor, device));
checkCall(LIB.cudaDeviceGetAttribute(minor, attrComputeCapabilityMinor, device));
return String.valueOf(major[0]) + minor[0];
}
/**
* Returns the {@link MemoryUsage} of the specified GPU device.
*
* @param device the GPU {@link Device} to retrieve
* @return the {@link MemoryUsage} of the specified GPU device
* @throws IllegalArgumentException if {@link Device} is not GPU device or does not exist
*/
public static MemoryUsage getGpuMemory(Device device) {
if (!device.isGpu()) {
throw new IllegalArgumentException("Only GPU device is allowed.");
}
if (Boolean.getBoolean("ai.djl.util.cuda.fork")) {
String[] ret = execute(device.getDeviceId());
if (ret.length != 3) {
throw new IllegalArgumentException(ret[0]);
}
long total = Long.parseLong(ret[1]);
long used = Long.parseLong(ret[2]);
return new MemoryUsage(-1, used, used, total);
}
if (LIB == null) {
throw new IllegalStateException("No GPU device detected.");
}
int[] currentDevice = new int[1];
checkCall(LIB.cudaGetDevice(currentDevice));
checkCall(LIB.cudaSetDevice(device.getDeviceId()));
long[] free = new long[1];
long[] total = new long[1];
checkCall(LIB.cudaMemGetInfo(free, total));
checkCall(LIB.cudaSetDevice(currentDevice[0]));
long committed = total[0] - free[0];
return new MemoryUsage(-1, committed, committed, total[0]);
}
/**
* The main entrypoint to get CUDA information with command line.
*
* @param args the command line arguments.
*/
@SuppressWarnings("PMD.SystemPrintln")
public static void main(String[] args) {
logging = false;
int gpuCount = getGpuCount();
if (args.length == 0) {
if (gpuCount <= 0) {
System.out.println("0,-1");
return;
}
int cudaVersion = getCudaVersion();
StringBuilder sb = new StringBuilder();
sb.append(gpuCount).append(',').append(cudaVersion);
for (int i = 0; i < gpuCount; ++i) {
sb.append(',').append(getComputeCapability(i));
}
System.out.println(sb);
return;
}
try {
int deviceId = Integer.parseInt(args[0]);
if (deviceId < 0 || deviceId >= gpuCount) {
System.out.println("Invalid device: " + deviceId);
return;
}
MemoryUsage mem = getGpuMemory(Device.gpu(deviceId));
String cc = getComputeCapability(deviceId);
System.out.println(cc + ',' + mem.getMax() + ',' + mem.getUsed());
} catch (NumberFormatException e) {
System.out.println("Invalid device: " + args[0]);
}
}
private static CudaLibrary loadLibrary() {
try {
if (Boolean.getBoolean("ai.djl.util.cuda.fork")) {
return null;
}
if (System.getProperty("os.name").startsWith("Win")) {
String path = Utils.getenv("PATH");
if (path == null) {
return null;
}
Pattern p = Pattern.compile("cudart64_\\d+\\.dll");
String cudaPath = Utils.getenv("CUDA_PATH");
String[] searchPath;
if (cudaPath == null) {
searchPath = path.split(";");
} else {
searchPath = (cudaPath + "\\bin\\;" + path).split(";");
}
for (String item : searchPath) {
File dir = new File(item);
File[] files = dir.listFiles(n -> p.matcher(n.getName()).matches());
if (files != null && files.length > 0) {
String fileName = files[0].getName();
String cudaRt = fileName.substring(0, fileName.length() - 4);
if (logging) {
logger.debug("Found cudart: {}", files[0].getAbsolutePath());
}
return Native.load(cudaRt, CudaLibrary.class);
}
}
if (logging) {
logger.debug("No cudart library found in path.");
}
return null;
}
return Native.load("cudart", CudaLibrary.class);
} catch (UnsatisfiedLinkError e) {
if (logging) {
logger.debug("cudart library not found.");
logger.trace("", e);
}
} catch (LinkageError e) {
if (logging) {
logger.warn("You have a conflict version of JNA in the classpath.");
logger.debug("", e);
}
} catch (SecurityException e) {
if (logging) {
logger.warn("Access denied during loading cudart library.");
logger.trace("", e);
}
}
return null;
}
private static String[] execute(int deviceId) {
try {
String javaHome = System.getProperty("java.home");
String classPath = System.getProperty("java.class.path");
String os = System.getProperty("os.name");
List cmd = new ArrayList<>(4);
if (os.startsWith("Win")) {
cmd.add(javaHome + "\\bin\\java.exe");
} else {
cmd.add(javaHome + "/bin/java");
}
cmd.add("-cp");
cmd.add(classPath);
cmd.add("ai.djl.util.cuda.CudaUtils");
if (deviceId >= 0) {
cmd.add(String.valueOf(deviceId));
}
Process ps = new ProcessBuilder(cmd).redirectErrorStream(true).start();
try (InputStream is = ps.getInputStream()) {
String line = Utils.toString(is).trim();
return line.split(",");
}
} catch (IOException e) {
throw new IllegalArgumentException("Failed get GPU information", e);
}
}
private static void checkCall(int ret) {
if (LIB == null) {
throw new IllegalStateException("No cuda library is loaded.");
}
if (ret != 0) {
throw new EngineException(
"CUDA API call failed: " + LIB.cudaGetErrorString(ret) + " (" + ret + ')');
}
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy