All Downloads are FREE. Search and download functionalities are using the official Maven repository.

ai.djl.Model Maven / Gradle / Ivy

There is a newer version: 0.30.0
Show newest version
/*
 * Copyright 2019 Amazon.com, Inc. or its affiliates. All Rights Reserved.
 *
 * Licensed under the Apache License, Version 2.0 (the "License"). You may not use this file except in compliance
 * with the License. A copy of the License is located at
 *
 * http://aws.amazon.com/apache2.0/
 *
 * or in the "license" file accompanying this file. This file is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES
 * OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions
 * and limitations under the License.
 */
package ai.djl;

import ai.djl.engine.Engine;
import ai.djl.inference.Predictor;
import ai.djl.ndarray.NDManager;
import ai.djl.ndarray.types.DataType;
import ai.djl.ndarray.types.Shape;
import ai.djl.nn.Block;
import ai.djl.training.Trainer;
import ai.djl.training.TrainingConfig;
import ai.djl.translate.Translator;
import ai.djl.util.PairList;
import java.io.IOException;
import java.io.InputStream;
import java.net.URL;
import java.nio.file.Path;
import java.util.Map;
import java.util.function.Function;

/**
 * A model is a collection of artifacts that is created by the training process.
 *
 * 

A deep learning model usually contains the following parts: * *

    *
  • the {@link Block} of operations to run *
  • the {@link ai.djl.nn.Parameter}s that are trained *
  • Input/Output information: input and output parameter names, shape, etc. *
  • Other artifacts such as a synset for classification that would be used during * pre-processing and post-processing *
* *

For loading a pre-trained model, see {@link Model#load(Path, String)} * *

For training a model, see {@link Trainer}. * *

For running inference with a model, see {@link Predictor}. */ public interface Model extends AutoCloseable { /** * Creates an empty model instance. * * @return a new Model instance */ static Model newInstance() { return newInstance(Device.defaultDevice()); } /** * Creates an empty model instance on the specified {@link Device}. * * @param device the device to load the model onto * @return a new model instance */ static Model newInstance(Device device) { return Engine.getInstance().newModel(device); } /** * Creates an empty model instance on the specified {@link Device} and engine. * * @param device the device to load the model onto * @param engineName the name of the engine * @return a new model instance */ static Model newInstance(Device device, String engineName) { return Engine.getEngine(engineName).newModel(device); } /** * Loads the model from the {@code modelPath}. * * @param modelPath the directory or file path of the model location * @throws IOException when IO operation fails in loading a resource * @throws MalformedModelException if model file is corrupted */ default void load(Path modelPath) throws IOException, MalformedModelException { load(modelPath, modelPath.toFile().getName(), null); } /** * Loads the model from the {@code modelPath} and the given name. * * @param modelPath the directory or file path of the model location * @param modelName the model file name * @throws IOException when IO operation fails in loading a resource * @throws MalformedModelException if model file is corrupted */ default void load(Path modelPath, String modelName) throws IOException, MalformedModelException { load(modelPath, modelName, null); } /** * Loads the model from the {@code modelPath} with the name and options provided. * * @param modelPath the directory or file path of the model location * @param modelName the model file name * @param options engine specific load model options, see documentation for each engine * @throws IOException when IO operation fails in loading a resource * @throws MalformedModelException if model file is corrupted */ void load(Path modelPath, String modelName, Map options) throws IOException, MalformedModelException; /** * Saves the model to the specified {@code modelPath} with the name provided. * * @param modelPath the directory or file path of the model location * @param modelName the model file name * @throws IOException when IO operation fails in loading a resource */ void save(Path modelPath, String modelName) throws IOException; /** * Gets the block from the Model. * * @return the {@link Block} */ Block getBlock(); /** * Sets the block for the Model for training and inference. * * @param block the {@link Block} used in Model */ void setBlock(Block block); /** * Gets the model name. * * @return name of the model */ String getName(); /** * Gets the property of the model based on property name. * * @param key the name of the property * @return the value of the property */ String getProperty(String key); /** * Sets a property to the model. * *

properties will be saved/loaded with model, user can store some information about the * model in here. * * @param key the name of the property * @param value the value of the property */ void setProperty(String key, String value); /** * Gets the {@link NDManager} from the model. * * @return the {@link NDManager} */ NDManager getNDManager(); /** * Creates a new {@link Trainer} instance for a Model. * * @param trainingConfig training configuration settings * @return the {@link Trainer} instance */ Trainer newTrainer(TrainingConfig trainingConfig); /** * Creates a new Predictor based on the model. * * @param translator the object used for pre-processing and postprocessing * @param the input object for pre-processing * @param the output object from postprocessing * @return an instance of {@code Predictor} */ Predictor newPredictor(Translator translator); /** * Returns the input descriptor of the model. * *

It contains the information that can be extracted from the model, usually name, shape, * layout and DataType. * * @return a PairList of String and Shape */ PairList describeInput(); /** * Returns the output descriptor of the model. * *

It contains the output information that can be obtained from the model. * * @return a PairList of String and Shape */ PairList describeOutput(); /** * Returns the artifact names associated with the model. * * @return an array of artifact names */ String[] getArtifactNames(); /** * Attempts to load the artifact using the given function and cache it if the specified artifact * is not already cached. * *

Model will cache loaded artifact, so the user doesn't need to keep tracking it. * *

{@code
     * String synset = model.getArtifact("synset.txt", k -> IOUtils.toString(k)));
     * }
* * @param name the name of the desired artifact * @param function the function to load the artifact * @param the type of the returned artifact object * @return the current (existing or computed) artifact associated with the specified name, or * null if the computed value is null * @throws IOException when IO operation fails in loading a resource * @throws ClassCastException if the cached artifact cannot be cast to the target class */ T getArtifact(String name, Function function) throws IOException; /** * Finds an artifact resource with a given name in the model. * * @param name the name of the desired artifact * @return a {@link java.net.URL} object or {@code null} if no artifact with this name is found * @throws IOException when IO operation fails in loading a resource */ URL getArtifact(String name) throws IOException; /** * Finds an artifact resource with a given name in the model. * * @param name the name of the desired artifact * @return a {@link java.io.InputStream} object or {@code null} if no resource with this name is * found * @throws IOException when IO operation fails in loading a resource */ InputStream getArtifactAsStream(String name) throws IOException; /** * Sets the standard data type used within the model. * * @param dataType the standard data type to use */ void setDataType(DataType dataType); /** * Returns the standard data type used within the model. * * @return the standard data type used within the model */ DataType getDataType(); /** * Casts the model to support a different precision level. * *

For example, you can cast the precision from Float to Int * * @param dataType the target dataType you would like to cast to */ void cast(DataType dataType); /** * Converts the model to use a lower precision quantized network. * *

Quantization converts the network to use int8 data type where possible for smaller model * size and faster computation without too large a drop in accuracy. See original paper. */ default void quantize() { throw new UnsupportedOperationException("Not implemented yet"); } /** {@inheritDoc} */ @Override void close(); }





© 2015 - 2024 Weber Informatics LLC | Privacy Policy