All Downloads are FREE. Search and download functionalities are using the official Maven repository.

ai.djl.nn.LambdaBlock Maven / Gradle / Ivy

There is a newer version: 0.30.0
Show newest version
/*
 * Copyright 2019 Amazon.com, Inc. or its affiliates. All Rights Reserved.
 *
 * Licensed under the Apache License, Version 2.0 (the "License"). You may not use this file except in compliance
 * with the License. A copy of the License is located at
 *
 * http://aws.amazon.com/apache2.0/
 *
 * or in the "license" file accompanying this file. This file is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES
 * OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions
 * and limitations under the License.
 */
package ai.djl.nn;

import ai.djl.MalformedModelException;
import ai.djl.ndarray.NDList;
import ai.djl.ndarray.NDManager;
import ai.djl.ndarray.types.Shape;
import ai.djl.training.ParameterStore;
import ai.djl.util.PairList;
import java.io.DataInputStream;
import java.io.DataOutputStream;
import java.io.IOException;
import java.util.Collections;
import java.util.List;
import java.util.function.Function;

/**
 * {@code LambdaBlock} is a {@link Block} with no parameters or children.
 *
 * 

{@code LambdaBlock} allows converting any function that takes an {@code NDList} as input and * returns an {@code NDList} into a parameter-less and child-less {@link Block}. This can be useful * in converting activation functions, identity blocks, and more. For example, identity block can be * created as {@code new LambdaBlock(x -> x)}. */ public class LambdaBlock extends ParameterBlock { private static final byte VERSION = 2; private Function lambda; /** * Creates a LambdaBlock that can apply the specified function. * * @param lambda the function to apply */ public LambdaBlock(Function lambda) { this.lambda = lambda; } /** {@inheritDoc} */ @Override public NDList forward( ParameterStore parameterStore, NDList inputs, boolean training, PairList params) { return lambda.apply(inputs); } /** {@inheritDoc} */ @Override public Shape[] getOutputShapes(NDManager manager, Shape[] inputShapes) { try (NDManager subManager = manager.newSubManager()) { NDList input = new NDList(inputShapes.length); for (Shape shape : inputShapes) { input.add(subManager.create(shape)); } NDList output = lambda.apply(input); Shape[] outputShapes = new Shape[output.size()]; for (int i = 0; i < output.size(); ++i) { outputShapes[i] = output.get(i).getShape(); } return outputShapes; } } /** {@inheritDoc} */ @Override public List getDirectParameters() { return Collections.emptyList(); } /** {@inheritDoc} */ @Override public Shape getParameterShape(String name, Shape[] inputShapes) { throw new IllegalArgumentException("LambdaBlocks have no parameters"); } /** {@inheritDoc} */ @Override public void saveParameters(DataOutputStream os) throws IOException { os.writeByte(VERSION); saveInputShapes(os); } /** {@inheritDoc} */ @Override public void loadParameters(NDManager manager, DataInputStream is) throws IOException, MalformedModelException { byte version = is.readByte(); if (version == VERSION) { readInputShapes(is); } else if (version != 1) { throw new MalformedModelException("Unsupported encoding version: " + version); } } /** {@inheritDoc} */ @Override public String toString() { return "Lambda()"; } }





© 2015 - 2024 Weber Informatics LLC | Privacy Policy