ai.djl.training.loss.SingleShotDetectionLoss Maven / Gradle / Ivy
/*
* Copyright 2019 Amazon.com, Inc. or its affiliates. All Rights Reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License"). You may not use this file except in compliance
* with the License. A copy of the License is located at
*
* http://aws.amazon.com/apache2.0/
*
* or in the "license" file accompanying this file. This file is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES
* OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions
* and limitations under the License.
*/
package ai.djl.training.loss;
import ai.djl.modality.cv.MultiBoxTarget;
import ai.djl.ndarray.NDArray;
import ai.djl.ndarray.NDList;
import ai.djl.util.Pair;
import java.util.Arrays;
/**
* {@code SingleShotDetectionLoss} is an implementation of {@link Loss}. It is used to compute the
* loss while training a Single Shot Detection (SSD) model for object detection. It involves
* computing the targets given the generated anchors, labels and predictions, and then computing the
* sum of class predictions and bounding box predictions.
*/
public class SingleShotDetectionLoss extends AbstractCompositeLoss {
private MultiBoxTarget multiBoxTarget = MultiBoxTarget.builder().build();
/** Base class for metric with abstract update methods. */
public SingleShotDetectionLoss() {
super("SingleShotDetectionLoss");
components =
Arrays.asList(
Loss.softmaxCrossEntropyLoss("ClassLoss"), Loss.l1Loss("BoundingBoxLoss"));
}
/**
* Calculate loss between label and prediction.
*
* @param labels target labels. Must contain (offsetLabels, masks, classlabels). This is
* returned by MultiBoxTarget function
* @param predictions predicted labels (class prediction, offset prediction)
* @return loss value
*/
@Override
protected Pair inputForComponent(
int componentIndex, NDList labels, NDList predictions) {
NDArray anchors = predictions.get(0);
NDArray classPredictions = predictions.get(1);
NDList targets =
multiBoxTarget.target(
new NDList(anchors, labels.head(), classPredictions.transpose(0, 2, 1)));
switch (componentIndex) {
case 0: // ClassLoss
NDArray classLabels = targets.get(2);
return new Pair<>(new NDList(classLabels), new NDList(classPredictions));
case 1: // BoundingBoxLoss
NDArray boundingBoxPredictions = predictions.get(2);
NDArray boundingBoxLabels = targets.get(0);
NDArray boundingBoxMasks = targets.get(1);
return new Pair<>(
new NDList(boundingBoxLabels.mul(boundingBoxMasks)),
new NDList(boundingBoxPredictions.mul(boundingBoxMasks)));
default:
throw new IllegalArgumentException("Invalid component index");
}
}
}
© 2015 - 2024 Weber Informatics LLC | Privacy Policy