All Downloads are FREE. Search and download functionalities are using the official Maven repository.

hex.schemas.CoxPHV2 Maven / Gradle / Ivy

There is a newer version: 3.46.0.6
Show newest version
package hex.schemas;

import hex.coxph.CoxPH;
import hex.coxph.CoxPHModel;
import hex.coxph.CoxPHModel.CoxPHParameters;
import water.H2O;
import water.Key;
import water.api.API;
import water.api.ModelParametersSchema;
import water.fvec.Frame;
import water.util.PojoUtils;

import java.util.Random;

public class CoxPHV2 extends ModelBuilderSchema {
  public static final class CoxPHParametersV2 extends ModelParametersSchema {
    public String[] fields() {
      return new String[]{
              "destination_key",
              "training_frame",
              "validation_frame",
              "response_column",

              "ignored_columns",

              "start_column",
              "stop_column",
              "event_column",

              "weights_column",
              "offset_columns",

              "ties",
              "init",
              "lre_min",
              "iter_max"
      };
    }

    @Override
    public CoxPHParameters createImpl() {
      H2O.unimpl();
      return null;
    }
  }
}

//
//    @API(help="Number of folds for n-fold cross-validation (0 to n)", direction= API.Direction.INOUT)
//    public int n_folds;
//    @API(help="Keep cross-validation Frames", direction=API.Direction.INOUT)
//    public boolean keep_cross_validation_splits = false;
//
//    /**
//     * A model key associated with a previously trained Deep Learning
//     * model. This option allows users to build a new model as a
//     * continuation of a previously generated model (e.g., by a grid search).
//     */
//    @API(help = "Model checkpoint to resume training with", direction=API.Direction.INOUT)
//    public Key checkpoint;
//
//    /**
//     * If enabled, store the best model under the destination key of this model at the end of training.
//     * Only applicable if training is not cancelled.
//     */
//    @API(help = "If enabled, override the final model with the best model found during training", direction=API.Direction.INOUT)
//    public boolean override_with_best_model = true;
//
//    /**
//     * Unlock expert mode parameters than can affect model building speed,
//     * predictive accuracy and scoring. Leaving expert mode parameters at default
//     * values is fine for many problems, but best results on complex datasets are often
//     * only attainable via expert mode options.
//     */
//    @API(help = "Enable expert mode (to access all options from GUI)", direction=API.Direction.INOUT)
//    public boolean expert_mode = false;
//
//    @API(help = "Auto-Encoder (Experimental)", direction=API.Direction.INOUT)
//    public boolean autoencoder = false;
//
//    @API(help="Use all factor levels of categorical variables. Otherwise, the first factor level is omitted (without loss of accuracy). Useful for variable importances and auto-enabled for autoencoder.", level = API.Level.secondary, direction=API.Direction.INOUT)
//    public boolean use_all_factor_levels = true;
//
//    /*Neural Net Topology*/
//    /**
//     * The activation function (non-linearity) to be used the neurons in the hidden layers.
//     * Tanh: Hyperbolic tangent function (same as scaled and shifted sigmoid).
//     * Rectifier: Chooses the maximum of (0, x) where x is the input value.
//     * Maxout: Choose the maximum coordinate of the input vector.
//     * With Dropout: Zero out a random user-given fraction of the
//     *      incoming weights to each hidden layer during training, for each
//     *      training row. This effectively trains exponentially many models at
//     *      once, and can improve generalization.
//     */
//    @API(help = "Activation function", values = { "Tanh", "TanhWithDropout", "Rectifier", "RectifierWithDropout", "Maxout", "MaxoutWithDropout" }, level=API.Level.critical, direction=API.Direction.INOUT)
//    public CoxPHParameters.Activation activation = CoxPHParameters.Activation.Rectifier;
//
//    /**
//     * The number and size of each hidden layer in the model.
//     * For example, if a user specifies "100,200,100" a model with 3 hidden
//     * layers will be produced, and the middle hidden layer will have 200
//     * neurons.To specify a grid search, add parentheses around each
//     * model's specification: "(100,100), (50,50,50), (20,20,20,20)".
//     */
//    @API(help = "Hidden layer sizes (e.g. 100,100). Grid search: (10,10), (20,20,20)", level = API.Level.critical, direction=API.Direction.INOUT)
//    public int[] hidden = new int[] { 200, 200 };
//
//    /**
//     * The number of passes over the training dataset to be carried out.
//     * It is recommended to start with lower values for initial grid searches.
//     * This value can be modified during checkpoint restarts and allows continuation
//     * of selected models.
//     */
//    @API(help = "How many times the dataset should be iterated (streamed), can be fractional", /* dmin = 1e-3, */ level = API.Level.critical, direction=API.Direction.INOUT)
//    public double epochs = 10;
//
//    /**
//     * The number of training data rows to be processed per iteration. Note that
//     * independent of this parameter, each row is used immediately to update the model
//     * with (online) stochastic gradient descent. This parameter controls the
//     * synchronization period between nodes in a distributed environment and the
//     * frequency at which scoring and model cancellation can happen. For example, if
//     * it is set to 10,000 on H2O running on 4 nodes, then each node will
//     * process 2,500 rows per iteration, sampling randomly from their local data.
//     * Then, model averaging between the nodes takes place, and scoring can happen
//     * (dependent on scoring interval and duty factor). Special values are 0 for
//     * one epoch per iteration, -1 for processing the maximum amount of data
//     * per iteration (if **replicate training data** is enabled, N epochs
//     * will be trained per iteration on N nodes, otherwise one epoch). Special value
//     * of -2 turns on automatic mode (auto-tuning).
//     */
//    @API(help = "Number of training samples (globally) per MapReduce iteration. Special values are 0: one epoch, -1: all available data (e.g., replicated training data), -2: automatic", /* lmin = -2, */ level = API.Level.secondary, direction=API.Direction.INOUT)
//    public long train_samples_per_iteration = -2;
//
//    @API(help = "Target ratio of communication overhead to computation. Only for multi-node operation and train_samples_per_iteration=-2 (auto-tuning)", /* dmin = 1e-3, dmax=0.999, */ level = API.Level.secondary, direction=API.Direction.INOUT)
//    public double target_ratio_comm_to_comp = 0.02;
//
//    /**
//     * The random seed controls sampling and initialization. Reproducible
//     * results are only expected with single-threaded operation (i.e.,
//     * when running on one node, turning off load balancing and providing
//     * a small dataset that fits in one chunk).  In general, the
//     * multi-threaded asynchronous updates to the model parameters will
//     * result in (intentional) race conditions and non-reproducible
//     * results. Note that deterministic sampling and initialization might
//     * still lead to some weak sense of determinism in the model.
//     */
//    @API(help = "Seed for random numbers (affects sampling) - Note: only reproducible when running single threaded", direction=API.Direction.INOUT)
//    public long seed = new Random().nextLong();
//
//    /*Adaptive Learning Rate*/
//    /**
//     * The implemented adaptive learning rate algorithm (ADADELTA) automatically
//     * combines the benefits of learning rate annealing and momentum
//     * training to avoid slow convergence. Specification of only two
//     * parameters (rho and epsilon)  simplifies hyper parameter search.
//     * In some cases, manually controlled (non-adaptive) learning rate and
//     * momentum specifications can lead to better results, but require the
//     * specification (and hyper parameter search) of up to 7 parameters.
//     * If the model is built on a topology with many local minima or
//     * long plateaus, it is possible for a constant learning rate to produce
//     * sub-optimal results. Learning rate annealing allows digging deeper into
//     * local minima, while rate decay allows specification of different
//     * learning rates per layer.  When the gradient is being estimated in
//     * a long valley in the optimization landscape, a large learning rate
//     * can cause the gradient to oscillate and move in the wrong
//     * direction. When the gradient is computed on a relatively flat
//     * surface with small learning rates, the model can converge far
//     * slower than necessary.
//     */
//    @API(help = "Adaptive learning rate (ADADELTA)", level = API.Level.secondary, direction=API.Direction.INOUT)
//    public boolean adaptive_rate = true;
//
//    /**
//     * The first of two hyper parameters for adaptive learning rate (ADADELTA).
//     * It is similar to momentum and relates to the memory to prior weight updates.
//     * Typical values are between 0.9 and 0.999.
//     * This parameter is only active if adaptive learning rate is enabled.
//     */
//    @API(help = "Adaptive learning rate time decay factor (similarity to prior updates)", /* dmin = 0.01, dmax = 1, */ level = API.Level.secondary, direction=API.Direction.INOUT)
//    public double rho = 0.99;
//
//    /**
//     * The second of two hyper parameters for adaptive learning rate (ADADELTA).
//     * It is similar to learning rate annealing during initial training
//     * and momentum at later stages where it allows forward progress.
//     * Typical values are between 1e-10 and 1e-4.
//     * This parameter is only active if adaptive learning rate is enabled.
//     */
//    @API(help = "Adaptive learning rate smoothing factor (to avoid divisions by zero and allow progress)", /* dmin = 1e-15, dmax = 1, */ level = API.Level.secondary, direction=API.Direction.INOUT)
//    public double epsilon = 1e-8;
//
//    /*Learning Rate*/
//    /**
//     * When adaptive learning rate is disabled, the magnitude of the weight
//     * updates are determined by the user specified learning rate
//     * (potentially annealed), and are a function  of the difference
//     * between the predicted value and the target value. That difference,
//     * generally called delta, is only available at the output layer. To
//     * correct the output at each hidden layer, back propagation is
//     * used. Momentum modifies back propagation by allowing prior
//     * iterations to influence the current update. Using the momentum
//     * parameter can aid in avoiding local minima and the associated
//     * instability. Too much momentum can lead to instabilities, that's
//     * why the momentum is best ramped up slowly.
//     * This parameter is only active if adaptive learning rate is disabled.
//     */
//    @API(help = "Learning rate (higher => less stable, lower => slower convergence)", /* dmin = 1e-10, dmax = 1, */ level = API.Level.secondary, direction=API.Direction.INOUT)
//    public double rate = .005;
//
//    /**
//     * Learning rate annealing reduces the learning rate to "freeze" into
//     * local minima in the optimization landscape.  The annealing rate is the
//     * inverse of the number of training samples it takes to cut the learning rate in half
//     * (e.g., 1e-6 means that it takes 1e6 training samples to halve the learning rate).
//     * This parameter is only active if adaptive learning rate is disabled.
//     */
//    @API(help = "Learning rate annealing: rate / (1 + rate_annealing * samples)", /* dmin = 0, dmax = 1, */ level = API.Level.secondary, direction=API.Direction.INOUT)
//    public double rate_annealing = 1e-6;
//
//    /**
//     * The learning rate decay parameter controls the change of learning rate across layers.
//     * For example, assume the rate parameter is set to 0.01, and the rate_decay parameter is set to 0.5.
//     * Then the learning rate for the weights connecting the input and first hidden layer will be 0.01,
//     * the learning rate for the weights connecting the first and the second hidden layer will be 0.005,
//     * and the learning rate for the weights connecting the second and third hidden layer will be 0.0025, etc.
//     * This parameter is only active if adaptive learning rate is disabled.
//     */
//    @API(help = "Learning rate decay factor between layers (N-th layer: rate*alpha^(N-1))", /* dmin = 0, */ level = API.Level.expert, direction=API.Direction.INOUT)
//    public double rate_decay = 1.0;
//
//    /*Momentum*/
//    /**
//     * The momentum_start parameter controls the amount of momentum at the beginning of training.
//     * This parameter is only active if adaptive learning rate is disabled.
//     */
//    @API(help = "Initial momentum at the beginning of training (try 0.5)", /* dmin = 0, dmax = 0.9999999999, */ level = API.Level.secondary, direction=API.Direction.INOUT)
//    public double momentum_start = 0;
//
//    /**
//     * The momentum_ramp parameter controls the amount of learning for which momentum increases
//     * (assuming momentum_stable is larger than momentum_start). The ramp is measured in the number
//     * of training samples.
//     * This parameter is only active if adaptive learning rate is disabled.
//     */
//    @API(help = "Number of training samples for which momentum increases", /* dmin = 1, */ level = API.Level.secondary, direction=API.Direction.INOUT)
//    public double momentum_ramp = 1e6;
//
//    /**
//     * The momentum_stable parameter controls the final momentum value reached after momentum_ramp training samples.
//     * The momentum used for training will remain the same for training beyond reaching that point.
//     * This parameter is only active if adaptive learning rate is disabled.
//     */
//    @API(help = "Final momentum after the ramp is over (try 0.99)", /* dmin = 0, dmax = 0.9999999999, */ level = API.Level.secondary, direction=API.Direction.INOUT)
//    public double momentum_stable = 0;
//
//    /**
//     * The Nesterov accelerated gradient descent method is a modification to
//     * traditional gradient descent for convex functions. The method relies on
//     * gradient information at various points to build a polynomial approximation that
//     * minimizes the residuals in fewer iterations of the descent.
//     * This parameter is only active if adaptive learning rate is disabled.
//     */
//    @API(help = "Use Nesterov accelerated gradient (recommended)", level = API.Level.secondary, direction=API.Direction.INOUT)
//    public boolean nesterov_accelerated_gradient = true;
//
//    /*Regularization*/
//    /**
//     * A fraction of the features for each training row to be omitted from training in order
//     * to improve generalization (dimension sampling).
//     */
//    @API(help = "Input layer dropout ratio (can improve generalization, try 0.1 or 0.2)", /* dmin = 0, dmax = 1, */ level = API.Level.secondary, direction=API.Direction.INOUT)
//    public double input_dropout_ratio = 0.0;
//
//    /**
//     * A fraction of the inputs for each hidden layer to be omitted from training in order
//     * to improve generalization. Defaults to 0.5 for each hidden layer if omitted.
//     */
//    @API(help = "Hidden layer dropout ratios (can improve generalization), specify one value per hidden layer, defaults to 0.5", /* dmin = 0, dmax = 1, */ level = API.Level.secondary, direction=API.Direction.INOUT)
//    public double[] hidden_dropout_ratios;
//
//    /**
//     * A regularization method that constrains the absolute value of the weights and
//     * has the net effect of dropping some weights (setting them to zero) from a model
//     * to reduce complexity and avoid overfitting.
//     */
//    @API(help = "L1 regularization (can add stability and improve generalization, causes many weights to become 0)", /* dmin = 0, dmax = 1, */ level = API.Level.secondary, direction=API.Direction.INOUT)
//    public double l1 = 0.0;
//
//    /**
//     *  A regularization method that constrdains the sum of the squared
//     * weights. This method introduces bias into parameter estimates, but
//     * frequently produces substantial gains in modeling as estimate variance is
//     * reduced.
//     */
//    @API(help = "L2 regularization (can add stability and improve generalization, causes many weights to be small", /* dmin = 0, dmax = 1, */ level = API.Level.secondary, direction=API.Direction.INOUT)
//    public double l2 = 0.0;
//
//    /**
//     *  A maximum on the sum of the squared incoming weights into
//     * any one neuron. This tuning parameter is especially useful for unbound
//     * activation functions such as Maxout or Rectifier.
//     */
//    @API(help = "Constraint for squared sum of incoming weights per unit (e.g. for Rectifier)", /* dmin = 1e-10, */ level = API.Level.expert, direction=API.Direction.INOUT)
//    public float max_w2 = Float.POSITIVE_INFINITY;
//
//    /*Initialization*/
//    /**
//     * The distribution from which initial weights are to be drawn. The default
//     * option is an optimized initialization that considers the size of the network.
//     * The "uniform" option uses a uniform distribution with a mean of 0 and a given
//     * interval. The "normal" option draws weights from the standard normal
//     * distribution with a mean of 0 and given standard deviation.
//     */
//    @API(help = "Initial Weight Distribution", values = { "UniformAdaptive", "Uniform", "Normal" }, level = API.Level.expert, direction=API.Direction.INOUT)
//    public CoxPHParameters.InitialWeightDistribution initial_weight_distribution = CoxPHParameters.InitialWeightDistribution.UniformAdaptive;
//
//    /**
//     * The scale of the distribution function for Uniform or Normal distributions.
//     * For Uniform, the values are drawn uniformly from -initial_weight_scale...initial_weight_scale.
//     * For Normal, the values are drawn from a Normal distribution with a standard deviation of initial_weight_scale.
//     */
//    @API(help = "Uniform: -value...value, Normal: stddev)", /* dmin = 0, */ level = API.Level.expert, direction=API.Direction.INOUT)
//    public double initial_weight_scale = 1.0;
//
//    /**
//     * The loss (error) function to be minimized by the model.
//     * Cross Entropy loss is used when the model output consists of independent
//     * hypotheses, and the outputs can be interpreted as the probability that each
//     * hypothesis is true. Cross entropy is the recommended loss function when the
//     * target values are class labels, and especially for imbalanced data.
//     * It strongly penalizes error in the prediction of the actual class label.
//     * Mean Square loss is used when the model output are continuous real values, but can
//     * be used for classification as well (where it emphasizes the error on all
//     * output classes, not just for the actual class).
//     */
//    @API(help = "Loss function", values = { "Automatic", "MeanSquare", "CrossEntropy" }, level = API.Level.expert, direction=API.Direction.INOUT)
//    public CoxPHParameters.Loss loss = CoxPHParameters.Loss.Automatic;
//
//    /*Scoring*/
//    /**
//     * The minimum time (in seconds) to elapse between model scoring. The actual
//     * interval is determined by the number of training samples per iteration and the scoring duty cycle.
//     */
//    @API(help = "Shortest time interval (in secs) between model scoring", /* dmin = 0, */ level = API.Level.secondary, direction=API.Direction.INOUT)
//    public double score_interval = 5;
//
//    /**
//     * The number of training dataset points to be used for scoring. Will be
//     * randomly sampled. Use 0 for selecting the entire training dataset.
//     */
//    @API(help = "Number of training set samples for scoring (0 for all)", /* lmin = 0, */ level = API.Level.expert, direction=API.Direction.INOUT)
//    public long score_training_samples = 10000l;
//
//    /**
//     * The number of validation dataset points to be used for scoring. Can be
//     * randomly sampled or stratified (if "balance classes" is set and "score
//     * validation sampling" is set to stratify). Use 0 for selecting the entire
//     * training dataset.
//     */
//    @API(help = "Number of validation set samples for scoring (0 for all)", /* lmin = 0, */ level = API.Level.expert, direction=API.Direction.INOUT)
//    public long score_validation_samples = 0l;
//
//    /**
//     * Maximum fraction of wall clock time spent on model scoring on training and validation samples,
//     * and on diagnostics such as computation of feature importances (i.e., not on training).
//     */
//    @API(help = "Maximum duty cycle fraction for scoring (lower: more training, higher: more scoring).", /* dmin = 0, dmax = 1, */ level = API.Level.expert, direction=API.Direction.INOUT)
//    public double score_duty_cycle = 0.1;
//
//    /**
//     * The stopping criteria in terms of classification error (1-accuracy) on the
//     * training data scoring dataset. When the error is at or below this threshold,
//     * training stops.
//     */
//    @API(help = "Stopping criterion for classification error fraction on training data (-1 to disable)", /* dmin=-1, dmax=1, */ level = API.Level.expert, direction=API.Direction.INOUT)
//    public double classification_stop = 0;
//
//    /**
//     * The stopping criteria in terms of regression error (MSE) on the training
//     * data scoring dataset. When the error is at or below this threshold, training
//     * stops.
//     */
//    @API(help = "Stopping criterion for regression error (MSE) on training data (-1 to disable)", /* dmin=-1, */ level = API.Level.expert, direction=API.Direction.INOUT)
//    public double regression_stop = 1e-6;
//
//    /**
//     * Enable quiet mode for less output to standard output.
//     */
//    @API(help = "Enable quiet mode for less output to standard output", direction=API.Direction.INOUT)
//    public boolean quiet_mode = false;
//
//    /**
//     * For classification models, the maximum size (in terms of classes) of the
//     * confusion matrix for it to be printed. This option is meant to avoid printing
//     * extremely large confusion matrices.
//     */
//    @API(help = "Max. size (number of classes) for confusion matrices to be shown", direction=API.Direction.INOUT)
//    public int max_confusion_matrix_size = 20;
//
//    /**
//     * The maximum number (top K) of predictions to use for hit ratio computation (for multi-class only, 0 to disable)
//     */
//    @API(help = "Max. number (top K) of predictions to use for hit ratio computation (for multi-class only, 0 to disable)", /* lmin=0, */ level = API.Level.expert, direction=API.Direction.INOUT)
//    public int max_hit_ratio_k = 10;
//
//    /*Imbalanced Classes*/
//    /**
//     * For imbalanced data, balance training data class counts via
//     * over/under-sampling. This can result in improved predictive accuracy.
//     */
//    @API(help = "Balance training data class counts via over/under-sampling (for imbalanced data)", level = API.Level.expert, direction=API.Direction.INOUT)
//    public boolean balance_classes = false;
//
//    /**
//     * Desired over/under-sampling ratios per class (lexicographic order).
//     * Only when balance_classes is enabled.
//     * If not specified, they will be automatically computed to obtain class balance during training.
//     */
//    @API(help="Desired over/under-sampling ratios per class (in lexicographic order).  If not specified, they will be automatically computed to obtain class balance during training.", direction=API.Direction.INOUT)
//    public float[] class_sampling_factors;
//
//    /**
//     * When classes are balanced, limit the resulting dataset size to the
//     * specified multiple of the original dataset size.
//     */
//    @API(help = "Maximum relative size of the training data after balancing class counts (can be less than 1.0)", /* dmin=1e-3, */ level = API.Level.expert, direction=API.Direction.INOUT)
//    public float max_after_balance_size = 5.0f;
//
//    /**
//     * Method used to sample the validation dataset for scoring, see Score Validation Samples above.
//     */
//    @API(help = "Method used to sample validation dataset for scoring", values = { "Uniform", "Stratified" }, level = API.Level.expert, direction=API.Direction.INOUT)
//    public CoxPHParameters.ClassSamplingMethod score_validation_sampling = CoxPHParameters.ClassSamplingMethod.Uniform;
//
//    /*Misc*/
//    /**
//     * Gather diagnostics for hidden layers, such as mean and RMS values of learning
//     * rate, momentum, weights and biases.
//     */
//    @API(help = "Enable diagnostics for hidden layers", direction=API.Direction.INOUT)
//    public boolean diagnostics = true;
//
//    /**
//     * Whether to compute variable importances for input features.
//     * The implemented method (by Gedeon) considers the weights connecting the
//     * input features to the first two hidden layers.
//     */
//    @API(help = "Compute variable importances for input features (Gedeon method) - can be slow for large networks", direction=API.Direction.INOUT)
//    public boolean variable_importances = false;
//
//    /**
//     * Enable fast mode (minor approximation in back-propagation), should not affect results significantly.
//     */
//    @API(help = "Enable fast mode (minor approximation in back-propagation)", level = API.Level.expert, direction=API.Direction.INOUT)
//    public boolean fast_mode = true;
//
//    /**
//     * Ignore constant training columns (no information can be gained anyway).
//     */
//    @API(help = "Ignore constant training columns (no information can be gained anyway)", level = API.Level.expert, direction=API.Direction.INOUT)
//    public boolean ignore_const_cols = true;
//
//    /**
//     * Increase training speed on small datasets by splitting it into many chunks
//     * to allow utilization of all cores.
//     */
//    @API(help = "Force extra load balancing to increase training speed for small datasets (to keep all cores busy)", direction=API.Direction.INOUT)
//    public boolean force_load_balance = true;
//
//    /**
//     * Replicate the entire training dataset onto every node for faster training on small datasets.
//     */
//    @API(help = "Replicate the entire training dataset onto every node for faster training on small datasets", level = API.Level.expert, direction=API.Direction.INOUT)
//    public boolean replicate_training_data = true;
//
//    /**
//     * Run on a single node for fine-tuning of model parameters. Can be useful for
//     * checkpoint resumes after training on multiple nodes for fast initial
//     * convergence.
//     */
//    @API(help = "Run on a single node for fine-tuning of model parameters", direction=API.Direction.INOUT)
//    public boolean single_node_mode = false;
//
//    /**
//     * Enable shuffling of training data (on each node). This option is
//     * recommended if training data is replicated on N nodes, and the number of training samples per iteration
//     * is close to N times the dataset size, where all nodes train will (almost) all
//     * the data. It is automatically enabled if the number of training samples per iteration is set to -1 (or to N
//     * times the dataset size or larger).
//     */
//    @API(help = "Enable shuffling of training data (recommended if training data is replicated and train_samples_per_iteration is close to #nodes x #rows)", level = API.Level.expert, direction=API.Direction.INOUT)
//    public boolean shuffle_training_data = false;
//
//    @API(help = "Handling of missing values. Either Skip or MeanImputation.", values = { "Skip", "MeanImputation" } , direction=API.Direction.INOUT)
//    public CoxPHParameters.MissingValuesHandling missing_values_handling = CoxPHParameters.MissingValuesHandling.MeanImputation;
//
//    @API(help = "Sparse data handling (Experimental).", level = API.Level.expert, direction=API.Direction.INOUT)
//    public boolean sparse = false;
//
//    @API(help = "Use a column major weight matrix for input layer. Can speed up forward propagation, but might slow down backpropagation (Experimental).", level = API.Level.expert, direction=API.Direction.INOUT)
//    public boolean col_major = false;
//
//    @API(help = "Average activation for sparse auto-encoder (Experimental)", direction=API.Direction.INOUT)
//    public double average_activation = 0;
//
//    @API(help = "Sparsity regularization (Experimental)", direction=API.Direction.INOUT)
//    public double sparsity_beta = 0;
//
//    @API(help = "Max. number of categorical features, enforced via hashing (Experimental)", level = API.Level.expert, direction=API.Direction.INOUT)
//    public int max_categorical_features = Integer.MAX_VALUE;
//
//    @API(help = "Force reproducibility on small data (will be slow - only uses 1 thread)", level = API.Level.expert, direction=API.Direction.INOUT)
//    public boolean reproducible = false;
//
//    @Override public CoxPHParametersV2 fillFromImpl(CoxPHParameters parms) {
//      super.fillFromImpl(parms);
//      return this;
//    }
//
//    public CoxPHParameters createImpl() {
//      CoxPHParameters impl = new CoxPHParameters();
//      PojoUtils.copyProperties(impl, this, PojoUtils.FieldNaming.DEST_HAS_UNDERSCORES); // and some do. . .
//      // Sigh:
//      impl._train = (this.training_frame == null ? null : this.training_frame._key);
//      impl._valid = (this.validation_frame == null ? null : this.validation_frame._key);
//      impl._destination_key = destination_key;
//
//      impl._response_column = response_column;
//      return impl;
//    }
//  }
//
//  //==========================
//  // Custom adapters go here
//
//  @Override public CoxPHParametersV2 createParametersSchema() { return new CoxPHParametersV2(); }
//
//  // TODO: refactor ModelBuilder creation
//  @Override public CoxPH createImpl() {
//    CoxPHParameters parms = parameters.createImpl();
//    return new CoxPH(parms);
//  }
//
//  // Return a URL to invoke CoxPH on this Frame
//  @Override protected String acceptsFrame( Frame fr ) { return "/v2/CoxPH?training_frame="+fr._key; }
// }




© 2015 - 2025 Weber Informatics LLC | Privacy Policy