
hex.deeplearning.DeepLearning Maven / Gradle / Ivy
package hex.deeplearning;
import hex.DataInfo;
import hex.Model;
import hex.ModelCategory;
import hex.SupervisedModelBuilder;
import hex.schemas.DeepLearningV3;
import hex.schemas.ModelBuilderSchema;
import water.*;
import water.exceptions.H2OModelBuilderIllegalArgumentException;
import water.fvec.Frame;
import water.fvec.RebalanceDataSet;
import water.fvec.Vec;
import water.init.Linpack;
import water.init.NetworkTest;
import water.util.*;
import java.lang.reflect.Field;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.HashSet;
import java.util.List;
import static water.util.MRUtils.sampleFrame;
import static water.util.MRUtils.sampleFrameStratified;
/**
* Deep Learning Neural Net implementation based on MRTask
*/
public class DeepLearning extends SupervisedModelBuilder {
@Override
public ModelCategory[] can_build() {
return new ModelCategory[]{
ModelCategory.Regression,
ModelCategory.Binomial,
ModelCategory.Multinomial,
};
}
@Override public BuilderVisibility builderVisibility() { return BuilderVisibility.Stable; };
@Override
public boolean isSupervised() {
return !_parms._autoencoder;
}
public DeepLearning( DeepLearningModel.DeepLearningParameters parms ) {
super("DeepLearning", parms); init(false);
}
public ModelBuilderSchema schema() { return new DeepLearningV3(); }
/** Start the DeepLearning training Job on an F/J thread. */
@Override public Job trainModel() {
// We look at _train before init(true) is called, so step around that here:
long work = 1;
if (null != _train)
work = (long)_parms._epochs * _train.numRows();
return start(new DeepLearningDriver(), work);
}
/** Initialize the ModelBuilder, validating all arguments and preparing the
* training frame. This call is expected to be overridden in the subclasses
* and each subclass will start with "super.init();". This call is made
* by the front-end whenever the GUI is clicked, and needs to be fast;
* heavy-weight prep needs to wait for the trainModel() call.
*
* Validate the very large number of arguments in the DL Parameter directly. */
@Override public void init(boolean expensive) {
super.init(expensive);
_parms.validate(this, expensive);
if (expensive && error_count() == 0) checkMemoryFootPrint();
}
/**
* Helper to create the DataInfo object from training/validation frames and the DL parameters
* @param train Training frame
* @param valid Validation frame
* @param parms Model parameters
* @return
*/
static DataInfo makeDataInfo(Frame train, Frame valid, DeepLearningModel.DeepLearningParameters parms) {
return new DataInfo(
Key.make(), //dest key
train,
valid,
parms._autoencoder ? 0 : 1, //nResponses
parms._autoencoder || parms._use_all_factor_levels, //use all FactorLevels for auto-encoder
parms._autoencoder ? DataInfo.TransformType.NORMALIZE : DataInfo.TransformType.STANDARDIZE, //transform predictors
train.lastVec().isEnum() ? DataInfo.TransformType.NONE : DataInfo.TransformType.STANDARDIZE, //transform response (only used if nResponses > 0)
parms._missing_values_handling == DeepLearningModel.DeepLearningParameters.MissingValuesHandling.Skip, //whether to skip missing
true); //always add a bucket for missing values
}
@Override
protected void checkMemoryFootPrint() {
if (_parms._checkpoint != null) return;
long p = _train.degreesOfFreedom() - (_parms._autoencoder ? 0 : _train.lastVec().cardinality());
String[][] dom = _train.domains();
// hack: add the factor levels for the NAs
for (int i=0; i<_train.numCols()-(_parms._autoencoder ? 0 : 1); ++i) {
if (dom[i] != null) {
p++;
}
}
// assert(makeDataInfo(_train, _valid, _parms).fullN() == p);
long output = _parms._autoencoder ? p : Math.abs(_train.lastVec().cardinality());
// weights
long model_size = p * _parms._hidden[0];
int layer=1;
for (; layer < _parms._hidden.length; ++layer)
model_size += _parms._hidden[layer-1] * _parms._hidden[layer];
model_size += _parms._hidden[layer-1] * output;
// biases
for (layer=0; layer < _parms._hidden.length; ++layer)
model_size += _parms._hidden[layer];
model_size += output;
if (model_size > 1e8) {
String msg = "Model is too large: " + model_size + " parameters. Try reducing the number of neurons in the hidden layers (or reduce the number of categorical factors).";
error("_hidden", msg);
cancel(msg);
}
}
public class DeepLearningDriver extends H2O.H2OCountedCompleter {
@Override protected void compute2() {
try {
byte[] cs = new AutoBuffer().put(_parms).buf();
Scope.enter();
// Init parameters
init(true);
// Read lock input
_parms.read_lock_frames(DeepLearning.this);
// Something goes wrong
if (error_count() > 0){
DeepLearning.this.updateValidationMessages();
throw H2OModelBuilderIllegalArgumentException.makeFromBuilder(DeepLearning.this);
}
buildModel();
//check that _parms isn't changed during DL model training
byte[] cs2 = new AutoBuffer().put(_parms).buf();
assert(Arrays.equals(cs, cs2));
done(); // Job done!
// if (n_folds > 0) CrossValUtils.crossValidate(this);
} catch( Throwable t ) {
Job thisJob = DKV.getGet(_key);
if (thisJob._state == JobState.CANCELLED) {
Log.info("Job cancelled by user.");
} else {
failed(t);
throw t;
}
} finally {
_parms.read_unlock_frames(DeepLearning.this);
Scope.exit();
}
tryComplete();
}
Key self() { return _key; }
// the following parameters can be modified when restarting from a checkpoint
transient final String [] cp_modifiable = new String[] {
"_seed",
"_epochs",
"_score_interval",
"_train_samples_per_iteration",
"_target_ratio_comm_to_comp",
"_score_duty_cycle",
"_score_training_samples",
"_classification_stop",
"_regression_stop",
"_quiet_mode",
"_max_confusion_matrix_size",
"_max_hit_ratio_k",
"_diagnostics",
"_variable_importances",
"_force_load_balance",
"_replicate_training_data",
"_shuffle_training_data",
"_single_node_mode",
"_fast_mode",
// Allow modification of the regularization parameters after a checkpoint restart
"_l1",
"_l2",
"_max_w2",
"_input_dropout_ratio",
"_hidden_dropout_ratios",
"_loss",
"_overwrite_with_best_model",
"_missing_values_handling",
"_reproducible",
"_export_weights_and_biases"
};
// the following parameters must not be modified when restarting from a checkpoint
transient final String [] cp_not_modifiable = new String[] {
"_drop_na20_cols",
"_response_column",
"_activation",
// "_hidden", //this must be checked via Arrays.equals(a,b), not via String.equals()
// "_ignored_columns", //this must be checked via Arrays.equals(a,b), not via String.equals()
"_use_all_factor_levels",
"_adaptive_rate",
"_autoencoder",
"_rho",
"_epsilon",
"_sparse",
"_sparsity_beta",
"_col_major",
"_rate",
"_momentum_start",
"_momentum_ramp",
"_momentum_stable",
"_nesterov_accelerated_gradient",
"_ignore_const_cols",
"_max_categorical_features"
};
/**
* Train a Deep Learning model, assumes that all members are populated
* If checkpoint == null, then start training a new model, otherwise continue from a checkpoint
*/
public final void buildModel() {
Scope.enter();
DeepLearningModel cp = null;
if (_parms._checkpoint == null) {
cp = new DeepLearningModel(dest(), _parms, new DeepLearningModel.DeepLearningModelOutput(DeepLearning.this), _train, _valid);
cp.model_info().initializeMembers();
} else {
final DeepLearningModel previous = DKV.getGet(_parms._checkpoint);
if (previous == null) throw new IllegalArgumentException("Checkpoint not found.");
Log.info("Resuming from checkpoint.");
if( isClassifier() != previous._output.isClassifier() )
throw new IllegalArgumentException("Response type must be the same as for the checkpointed model.");
if( isSupervised() != previous._output.isSupervised() )
throw new IllegalArgumentException("Model type must be the same as for the checkpointed model.");
// check the user-given arguments for consistency
DeepLearningModel.DeepLearningParameters oldP = previous._parms; //user-given parameters for checkpointed model
DeepLearningModel.DeepLearningParameters newP = _parms; //user-given parameters for restart
new ProgressUpdate("Resuming from checkpoint").fork(_progressKey);
if (newP.getNumFolds() != 0)
throw new UnsupportedOperationException("n_folds must be 0: Cross-validation is not supported during checkpoint restarts.");
if ((_parms._valid == null) != (previous._parms._valid == null)
|| (_parms._valid != null && !_parms._valid.equals(previous._parms._valid))) {
throw new IllegalArgumentException("Validation dataset must be the same as for the checkpointed model.");
}
if (!newP._autoencoder && (newP._response_column == null || !newP._response_column.equals(oldP._response_column))) {
throw new IllegalArgumentException("Response column (" + newP._response_column + ") is not the same as for the checkpointed model: " + oldP._response_column);
}
if (!Arrays.equals(newP._hidden, oldP._hidden)) {
throw new IllegalArgumentException("Hidden layers (" + Arrays.toString(newP._hidden) + ") is not the same as for the checkpointed model: " + Arrays.toString(oldP._hidden));
}
if (!Arrays.equals(newP._ignored_columns, oldP._ignored_columns)) {
throw new IllegalArgumentException("Predictor columns must be the same as for the checkpointed model. Check ignored columns.");
}
//compare the user-given parameters before and after and check that they are not changed
for (Field fBefore : oldP.getClass().getDeclaredFields()) {
if (ArrayUtils.contains(cp_not_modifiable, fBefore.getName())) {
for (Field fAfter : newP.getClass().getDeclaredFields()) {
if (fBefore.equals(fAfter)) {
try {
if (fAfter.get(newP) == null || fBefore.get(oldP) == null || !fBefore.get(oldP).toString().equals(fAfter.get(newP).toString())) { // if either of the two parameters is null, skip the toString()
if (fBefore.get(oldP) == null && fAfter.get(newP) == null) continue; //if both parameters are null, we don't need to do anything
throw new IllegalArgumentException("Cannot change parameter: '" + fBefore.getName() + "': " + fBefore.get(oldP) + " -> " + fAfter.get(newP));
}
} catch (IllegalAccessException e) {
e.printStackTrace();
}
}
}
}
}
try {
final DataInfo dinfo = makeDataInfo(_train, _valid, _parms);
DKV.put(dinfo._key,dinfo);
cp = new DeepLearningModel(dest(), _parms, previous, false, dinfo);
cp.write_lock(self());
// these are the mutable parameters that are to be used by the model (stored in model_info._parms)
final DeepLearningModel.DeepLearningParameters actualNewP = cp.model_info().get_params(); //actually used parameters for model building (defaults filled in, etc.)
assert(actualNewP != previous.model_info().get_params());
assert(actualNewP != newP);
assert(actualNewP != oldP);
if (!Arrays.equals(cp._output._names, previous._output._names)) {
throw new IllegalArgumentException("Predictor columns of the training data must be the same as for the checkpointed model. Check ignored columns.");
}
if (!Arrays.deepEquals(cp._output._domains, previous._output._domains)) {
throw new IllegalArgumentException("Categorical factor levels of the training data must be the same as for the checkpointed model.");
}
if (dinfo.fullN() != previous.model_info().data_info().fullN()) {
throw new IllegalArgumentException("Total number of predictors is different than for the checkpointed model.");
}
for (Field fBefore : actualNewP.getClass().getDeclaredFields()) {
if (ArrayUtils.contains(cp_modifiable, fBefore.getName())) {
for (Field fAfter : newP.getClass().getDeclaredFields()) {
if (fBefore.equals(fAfter)) {
try {
if (fAfter.get(newP) == null || fBefore.get(actualNewP) == null || !fBefore.get(actualNewP).toString().equals(fAfter.get(newP).toString())) { // if either of the two parameters is null, skip the toString()
if (fBefore.get(actualNewP) == null && fAfter.get(newP) == null) continue; //if both parameters are null, we don't need to do anything
Log.info("Applying user-requested modification of '" + fBefore.getName() + "': " + fBefore.get(actualNewP) + " -> " + fAfter.get(newP));
fBefore.set(actualNewP, fAfter.get(newP));
}
} catch (IllegalAccessException e) {
e.printStackTrace();
}
}
}
}
}
// update parameters in place to set defaults etc.
DeepLearningModel.modifyParms(actualNewP, actualNewP, isClassifier());
actualNewP._epochs += previous.epoch_counter; //add new epochs to existing model
Log.info("Adding " + String.format("%.3f", previous.epoch_counter) + " epochs from the checkpointed model.");
if (actualNewP.getNumFolds() != 0) {
Log.info("Disabling cross-validation: Not supported when resuming training from a checkpoint.");
H2O.unimpl("writing to n_folds field needs to be uncommented");
// actualNewP._n_folds = 0;
}
cp.update(self());
} finally {
if (cp != null) cp.unlock(self());
}
}
trainModel(cp);
// clean up, but don't delete the model and the (last) model metrics
List keep = new ArrayList<>();
keep.add(dest());
if (cp._output._model_metrics.length != 0) keep.add(cp._output._model_metrics[cp._output._model_metrics.length-1]);
if (cp._output.weights != null && cp._output.biases != null) {
for (Key k : Arrays.asList(cp._output.weights)) {
keep.add(k);
for (Vec vk : ((Frame) DKV.getGet(k)).vecs()) {
keep.add(vk._key);
}
}
for (Key k : Arrays.asList(cp._output.biases)) {
keep.add(k);
for (Vec vk : ((Frame) DKV.getGet(k)).vecs()) {
keep.add(vk._key);
}
}
}
Scope.exit(keep.toArray(new Key[0]));
}
/**
* Train a Deep Learning neural net model
* @param model Input model (e.g., from initModel(), or from a previous training run)
* @return Trained model
*/
public final DeepLearningModel trainModel(DeepLearningModel model) {
Frame validScoreFrame = null;
Frame train, trainScoreFrame;
try {
// if (checkpoint == null && !quiet_mode) logStart(); //if checkpoint is given, some Job's params might be uninitialized (but the restarted model's parameters are correct)
if (model == null) {
model = DKV.get(dest()).get();
}
Log.info("Model category: " + (_parms._autoencoder ? "Auto-Encoder" : isClassifier() ? "Classification" : "Regression"));
final long model_size = model.model_info().size();
Log.info("Number of model parameters (weights/biases): " + String.format("%,d", model_size));
model.write_lock(self());
new ProgressUpdate("Setting up training data...").fork(_progressKey);
final DeepLearningModel.DeepLearningParameters mp = model.model_info().get_params();
Frame tra_fr = new Frame(Key.make(mp.train()._key.toString() + ".temporary"), _train.names(), _train.vecs());
Frame val_fr = _valid != null ? new Frame(Key.make(mp.valid()._key.toString() + ".temporary"), _valid.names(), _valid.vecs()) : null;
train = tra_fr;
if (mp._force_load_balance) {
new ProgressUpdate("Load balancing training data...").fork(_progressKey);
train = reBalance(train, mp._replicate_training_data /*rebalance into only 4*cores per node*/, mp._train.toString() + "." + model._key.toString() + ".train");
}
if (model._output.isClassifier() && mp._balance_classes) {
new ProgressUpdate("Balancing class distribution of training data...").fork(_progressKey);
float[] trainSamplingFactors = new float[train.lastVec().domain().length]; //leave initialized to 0 -> will be filled up below
if (mp._class_sampling_factors != null) {
if (mp._class_sampling_factors.length != train.lastVec().domain().length)
throw new IllegalArgumentException("class_sampling_factors must have " + train.lastVec().domain().length + " elements");
trainSamplingFactors = mp._class_sampling_factors.clone(); //clone: don't modify the original
}
train = sampleFrameStratified(
train, train.lastVec(), trainSamplingFactors, (long)(mp._max_after_balance_size*train.numRows()), mp._seed, true, false);
model._output._modelClassDist = new MRUtils.ClassDist(train.lastVec()).doAll(train.lastVec()).rel_dist();
}
model._output.autoencoder = _parms._autoencoder;
model.training_rows = train.numRows();
trainScoreFrame = sampleFrame(train, mp._score_training_samples, mp._seed); //training scoring dataset is always sampled uniformly from the training dataset
if (!_parms._quiet_mode) Log.info("Number of chunks of the training data: " + train.anyVec().nChunks());
if (val_fr != null) {
model.validation_rows = val_fr.numRows();
// validation scoring dataset can be sampled in multiple ways from the given validation dataset
if (model._output.isClassifier() && mp._balance_classes && mp._score_validation_sampling == DeepLearningModel.DeepLearningParameters.ClassSamplingMethod.Stratified) {
new ProgressUpdate("Sampling validation data (stratified)...").fork(_progressKey);
validScoreFrame = sampleFrameStratified(val_fr, val_fr.lastVec(), null,
mp._score_validation_samples > 0 ? mp._score_validation_samples : val_fr.numRows(), mp._seed +1, false /* no oversampling */, false);
} else {
new ProgressUpdate("Sampling validation data...").fork(_progressKey);
validScoreFrame = sampleFrame(val_fr, mp._score_validation_samples, mp._seed +1);
}
if (mp._force_load_balance) {
new ProgressUpdate("Balancing class distribution of validation data...").fork(_progressKey);
validScoreFrame = reBalance(validScoreFrame, false /*always split up globally since scoring should be distributed*/, mp._valid.toString() + "." + model._key.toString() + ".valid");
}
if (!_parms._quiet_mode) Log.info("Number of chunks of the validation data: " + validScoreFrame.anyVec().nChunks());
}
// Set train_samples_per_iteration size (cannot be done earlier since this depends on whether stratified sampling is done)
model.actual_train_samples_per_iteration = computeTrainSamplesPerIteration(mp, train.numRows(), model);
// Determine whether shuffling is enforced
if(mp._replicate_training_data && (model.actual_train_samples_per_iteration == train.numRows()*(mp._single_node_mode ?1:H2O.CLOUD.size())) && !mp._shuffle_training_data && H2O.CLOUD.size() > 1 && !mp._reproducible) {
Log.info("Enabling training data shuffling, because all nodes train on the full dataset (replicated training data).");
mp._shuffle_training_data = true;
}
if(!mp._shuffle_training_data && mp._balance_classes && !mp._reproducible) {
Log.info("Enabling training data shuffling, because balance_classes is enabled.");
mp._shuffle_training_data = true;
}
if (!mp._quiet_mode && mp._diagnostics) Log.info("Initial model:\n" + model.model_info());
if (_parms._autoencoder) {
new ProgressUpdate("Scoring null model of autoencoder...").fork(_progressKey);
model.doScoring(trainScoreFrame, validScoreFrame, self(), null); //get the null model reconstruction error
}
// put the initial version of the model into DKV
model.update(self());
model._timeLastScoreEnter = System.currentTimeMillis(); //to keep track of time per iteration, must be called before first call to doScoring
Log.info("Starting to train the Deep Learning model.");
//main loop
do {
DeepLearningModel.DeepLearningModelInfo mi = model.model_info();
final String speed = (model.run_time!=0 ? (" at " + mi.get_processed_total() * 1000 / model.run_time + " samples/s..."): "...");
final String etl = model.run_time == 0 ? "" : " Estimated time left: " + PrettyPrint.msecs((long)(model.run_time*(1.-progress())/progress()), true);
new ProgressUpdate("Training" + speed + etl).fork(_progressKey);
model.set_model_info(mp._epochs == 0 ? mi : H2O.CLOUD.size() > 1 && mp._replicate_training_data ? (mp._single_node_mode ?
new DeepLearningTask2(self(), train, mi, rowFraction(train, mp, model)).doAll(Key.make()).model_info() : //replicated data + single node mode
new DeepLearningTask2(self(), train, mi, rowFraction(train, mp, model)).doAllNodes().model_info()) : //replicated data + multi-node mode
new DeepLearningTask(self(), mi, rowFraction(train, mp, model)).doAll(train).model_info()); //distributed data (always in multi-node mode)
update(model.actual_train_samples_per_iteration); //update progress
}
while (model.doScoring(trainScoreFrame, validScoreFrame, self(), _progressKey));
// replace the model with the best model so far (if it's better)
if (!isCancelledOrCrashed() && _parms._overwrite_with_best_model && model.actual_best_model_key != null && _parms.getNumFolds() == 0) {
DeepLearningModel best_model = DKV.getGet(model.actual_best_model_key);
if (best_model != null && best_model.error() < model.error() && Arrays.equals(best_model.model_info().units, model.model_info().units)) {
Log.info("Setting the model to be the best model so far (based on scoring history).");
DeepLearningModel.DeepLearningModelInfo mi = best_model.model_info().deep_clone();
// Don't cheat - count full amount of training samples, since that's the amount of training it took to train (without finding anything better)
mi.set_processed_global(model.model_info().get_processed_global());
mi.set_processed_local(model.model_info().get_processed_local());
model.set_model_info(mi);
model.update(self());
model.doScoring(trainScoreFrame, validScoreFrame, self(), _progressKey);
assert(best_model.error() == model.error());
}
}
Log.info("==============================================================================================================================================================================");
Log.info("Finished training the Deep Learning model.");
Log.info(model);
Log.info("==============================================================================================================================================================================");
}
catch(Throwable ex) {
model = DKV.get(dest()).get();
Log.info("Deep Learning model building was cancelled.");
throw new RuntimeException(ex);
}
finally {
if (model != null) {
model.unlock(self());
if (model.actual_best_model_key != null) {
assert (model.actual_best_model_key != model._key);
DKV.remove(model.actual_best_model_key);
}
}
for (Frame f : _delete_me) f.delete(); //delete internally rebalanced frames
}
return model;
}
transient HashSet _delete_me = new HashSet<>();
/**
* Rebalance a frame for load balancing
* @param fr Input frame
* @param local whether to only create enough chunks to max out all cores on one node only
* @return Frame that has potentially more chunks
*/
private Frame reBalance(final Frame fr, boolean local, String name) {
int chunks = (int)Math.min( 4 * H2O.NUMCPUS * (local ? 1 : H2O.CLOUD.size()), fr.numRows());
if (fr.anyVec().nChunks() > chunks && !_parms._reproducible) {
Log.info("Dataset already contains " + fr.anyVec().nChunks() + " chunks. No need to rebalance.");
return fr;
} else if (_parms._reproducible) {
Log.warn("Reproducibility enforced - using only 1 thread - can be slow.");
chunks = 1;
}
if (!_parms._quiet_mode) Log.info("ReBalancing dataset into (at least) " + chunks + " chunks.");
Key newKey = Key.make(name + ".chunks" + chunks);
RebalanceDataSet rb = new RebalanceDataSet(fr, newKey, chunks);
H2O.submitTask(rb);
rb.join();
Frame f = DKV.get(newKey).get();
_delete_me.add(f);
return f;
}
/**
* Compute the actual train_samples_per_iteration size from the user-given parameter
* @param mp Model parameter (DeepLearning object)
* @param numRows number of training rows
* @param model DL model
* @return The total number of training rows to be processed per iteration (summed over on all nodes)
*/
private long computeTrainSamplesPerIteration(final DeepLearningModel.DeepLearningParameters mp, final long numRows, DeepLearningModel model) {
long tspi = mp._train_samples_per_iteration;
assert(tspi == 0 || tspi == -1 || tspi == -2 || tspi >= 1);
if (tspi == 0 || (!mp._replicate_training_data && tspi == -1) ) {
tspi = numRows;
if (!mp._quiet_mode) Log.info("Setting train_samples_per_iteration (" + mp._train_samples_per_iteration + ") to one epoch: #rows (" + tspi + ").");
}
else if (tspi == -1) {
tspi = (mp._single_node_mode ? 1 : H2O.CLOUD.size()) * numRows;
if (!mp._quiet_mode) Log.info("Setting train_samples_per_iteration (" + mp._train_samples_per_iteration + ") to #nodes x #rows (" + tspi + ").");
} else if (tspi == -2) {
// automatic tuning based on CPU speed, network speed and model size
// measure cpu speed
double total_gflops = 0;
for (H2ONode h2o : H2O.CLOUD._memary) {
HeartBeat hb = h2o._heartbeat;
total_gflops += hb._gflops;
}
if (mp._single_node_mode) total_gflops /= H2O.CLOUD.size();
if (total_gflops == 0) {
total_gflops = Linpack.run(H2O.SELF._heartbeat._cpus_allowed) * (mp._single_node_mode ? 1 : H2O.CLOUD.size());
}
final long model_size = model.model_info().size();
int[] msg_sizes = new int[]{ (int)(model_size*4) == (model_size*4) ? (int)(model_size*4) : Integer.MAX_VALUE };
double[] microseconds_collective = new double[msg_sizes.length];
NetworkTest.NetworkTester nt = new NetworkTest.NetworkTester(msg_sizes,null,microseconds_collective,model_size>1e6 ? 1 : 5 /*repeats*/,false,true /*only collectives*/);
nt.compute2();
//length of the network traffic queue based on log-tree rollup (2 log(nodes))
int network_queue_length = mp._single_node_mode || H2O.CLOUD.size() == 1? 1 : 2*(int)Math.floor(Math.log(H2O.CLOUD.size())/Math.log(2));
// heuristics
double flops_overhead_per_row = 30;
if (mp._activation == DeepLearningModel.DeepLearningParameters.Activation.Maxout || mp._activation == DeepLearningModel.DeepLearningParameters.Activation.MaxoutWithDropout) {
flops_overhead_per_row *= 8;
} else if (mp._activation == DeepLearningModel.DeepLearningParameters.Activation.Tanh || mp._activation == DeepLearningModel.DeepLearningParameters.Activation.TanhWithDropout) {
flops_overhead_per_row *= 5;
}
// target fraction of comm vs cpu time: 5%
double fraction = mp._single_node_mode || H2O.CLOUD.size() == 1 ? 1e-3 : 0.05; //one single node mode, there's no model averaging effect, so less need to shorten the M/R iteration
// estimate the time for communication (network) and training (compute)
model.time_for_communication_us = (H2O.CLOUD.size() == 1 ? 1e4 /* add 10ms for single-node */ : 0) + network_queue_length * microseconds_collective[0];
double time_per_row_us = flops_overhead_per_row * model_size / (total_gflops * 1e9) / H2O.SELF._heartbeat._cpus_allowed * 1e6;
// compute the optimal number of training rows per iteration
// fraction := time_comm_us / (time_comm_us + tspi * time_per_row_us) ==> tspi = (time_comm_us/fraction - time_comm_us)/time_per_row_us
tspi = (long)((model.time_for_communication_us / fraction - model.time_for_communication_us)/ time_per_row_us);
tspi = Math.min(tspi, (mp._single_node_mode ? 1 : H2O.CLOUD.size()) * numRows * 10); //not more than 10x of what train_samples_per_iteration=-1 would do
// If the number is close to a multiple of epochs, use that -> prettier scoring
if (tspi > numRows && Math.abs(tspi % numRows)/(double)numRows < 0.2) tspi = tspi - tspi % numRows;
tspi = Math.min(tspi, (long)(mp._epochs * numRows / 10)); //limit to number of epochs desired, but at least 10 iterations total
tspi = Math.max(1, tspi); //at least 1 point
if (!mp._quiet_mode) {
Log.info("Auto-tuning parameter 'train_samples_per_iteration':");
Log.info("Estimated compute power : " + (int)total_gflops + " GFlops");
Log.info("Estimated time for comm : " + PrettyPrint.usecs((long) model.time_for_communication_us));
Log.info("Estimated time per row : " + ((long)time_per_row_us > 0 ? PrettyPrint.usecs((long) time_per_row_us) : time_per_row_us + " usecs"));
Log.info("Estimated training speed: " + (int)(1e6/time_per_row_us) + " rows/sec");
Log.info("Setting train_samples_per_iteration (" + mp._train_samples_per_iteration + ") to auto-tuned value: " + tspi);
}
} else {
// limit user-given value to number of epochs desired
tspi = Math.min(tspi, (long)(mp._epochs * numRows));
}
assert(tspi != 0 && tspi != -1 && tspi != -2 && tspi >= 1);
return tspi;
}
/**
* Compute the fraction of rows that need to be used for training during one iteration
* @param numRows number of training rows
* @param train_samples_per_iteration number of training rows to be processed per iteration
* @param replicate_training_data whether of not the training data is replicated on each node
* @return fraction of rows to be used for training during one iteration
*/
private float computeRowUsageFraction(final long numRows, final long train_samples_per_iteration, final boolean replicate_training_data) {
float rowUsageFraction = (float)train_samples_per_iteration / numRows;
if (replicate_training_data) rowUsageFraction /= H2O.CLOUD.size();
assert(rowUsageFraction > 0);
return rowUsageFraction;
}
private float rowFraction(Frame train, DeepLearningModel.DeepLearningParameters p, DeepLearningModel m) {
return computeRowUsageFraction(train.numRows(), m.actual_train_samples_per_iteration, p._replicate_training_data);
}
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy