
hex.pca.PCAModel Maven / Gradle / Ivy
package hex.pca;
import hex.*;
import water.DKV;
import water.Key;
import water.MRTask;
import water.fvec.Chunk;
import water.fvec.Frame;
import water.fvec.Vec;
import water.util.JCodeGen;
import water.util.SB;
import water.util.TwoDimTable;
public class PCAModel extends Model {
public static class PCAParameters extends Model.Parameters {
public DataInfo.TransformType _transform = DataInfo.TransformType.NONE; // Data transformation (demean to compare with PCA)
public int _k = 1; // Number of principal components
public int _max_iterations = 1000; // Max iterations
public long _seed = System.nanoTime(); // RNG seed
// public Key _loading_key;
public String _loading_name;
public boolean _keep_loading = true;
public boolean _use_all_factor_levels = false; // When expanding categoricals, should first level be kept or dropped?
}
public static class PCAOutput extends Model.Output {
// Principal components (eigenvectors)
public double[/*feature*/][/*k*/] _eigenvectors_raw;
public TwoDimTable _eigenvectors;
// Standard deviation of each principal component
public double[] _std_deviation;
// Importance of principal components
// Standard deviation, proportion of variance explained, and cumulative proportion of variance explained
public TwoDimTable _pc_importance;
// Number of categorical and numeric columns
public int _ncats;
public int _nnums;
// Categorical offset vector
public int[] _catOffsets;
// If standardized, mean of each numeric data column
public double[] _normSub;
// If standardized, one over standard deviation of each numeric data column
public double[] _normMul;
// Permutation matrix mapping training col indices to adaptedFrame
public int[] _permutation;
// Frame key for right singular vectors from SVD
public Key _loading_key;
public PCAOutput(PCA b) { super(b); }
/** Override because base class implements ncols-1 for features with the
* last column as a response variable; for PCA all the columns are
* features. */
@Override public int nfeatures() { return _names.length; }
@Override public ModelCategory getModelCategory() {
return ModelCategory.DimReduction;
}
}
public PCAModel(Key selfKey, PCAParameters parms, PCAOutput output) { super(selfKey,parms,output); }
@Override
public ModelMetrics.MetricBuilder makeMetricBuilder(String[] domain) {
return new ModelMetricsPCA.PCAModelMetrics(_parms._k);
}
@Override
protected Frame scoreImpl(Frame orig, Frame adaptedFr, String destination_key) {
Frame adaptFrm = new Frame(adaptedFr);
for(int i = 0; i < _parms._k; i++)
adaptFrm.add("PC"+String.valueOf(i+1),adaptFrm.anyVec().makeZero());
new MRTask() {
@Override public void map( Chunk chks[] ) {
double tmp [] = new double[_output._names.length];
double preds[] = new double[_parms._k];
for( int row = 0; row < chks[0]._len; row++) {
double p[] = score0(chks, row, tmp, preds);
for( int c=0; c= 0 && level < clen : "Categorical level x = " + level + " must be in 0 <= x < " + clen;
if (level > _output._catOffsets[j+1]-_output._catOffsets[j]-1) continue; // Skip categorical level in test set but not in train
preds[i] += _output._eigenvectors_raw[_output._catOffsets[j]+level][i];
}
int dcol = _output._ncats;
int vcol = numStart;
for (int j = 0; j < _output._nnums; j++) {
preds[i] += (data[_output._permutation[dcol]] - _output._normSub[j]) * _output._normMul[j] * _output._eigenvectors_raw[vcol][i];
dcol++; vcol++;
}
}
return preds;
}
@Override
public Frame score(Frame fr, String destination_key) {
Frame adaptFr = new Frame(fr);
adaptTestForTrain(adaptFr, true, false); // Adapt
Frame output = scoreImpl(fr, adaptFr, destination_key); // Score
cleanup_adapt( adaptFr, fr );
return output;
}
@Override protected SB toJavaInit(SB sb, SB fileContextSB) {
sb = super.toJavaInit(sb, fileContextSB);
sb.ip("public boolean isSupervised() { return " + isSupervised() + "; }").nl();
sb.ip("public int nfeatures() { return "+_output.nfeatures()+"; }").nl();
sb.ip("public int nclasses() { return "+_parms._k+"; }").nl();
if (_output._nnums > 0) {
JCodeGen.toStaticVar(sb, "NORMMUL", _output._normMul, "Standardization/Normalization scaling factor for numerical variables.");
JCodeGen.toStaticVar(sb, "NORMSUB", _output._normSub, "Standardization/Normalization offset for numerical variables.");
}
JCodeGen.toStaticVar(sb, "CATOFFS", _output._catOffsets, "Categorical column offsets.");
JCodeGen.toStaticVar(sb, "PERMUTE", _output._permutation, "Permutation index vector.");
JCodeGen.toStaticVar(sb, "EIGVECS", _output._eigenvectors_raw, "Eigenvector matrix.");
return sb;
}
@Override protected void toJavaPredictBody( final SB bodySb, final SB classCtxSb, final SB fileCtxSb) {
SB model = new SB();
bodySb.i().p("java.util.Arrays.fill(preds,0);").nl();
final int cats = _output._ncats;
final int nums = _output._nnums;
bodySb.i().p("final int nstart = CATOFFS[CATOFFS.length-1];").nl();
bodySb.i().p("for(int i = 0; i < ").p(_parms._k).p("; i++) {").nl();
// Categorical columns
bodySb.i(1).p("for(int j = 0; j < ").p(cats).p("; j++) {").nl();
bodySb.i(2).p("int c = (int) data[PERMUTE[j]];").nl();
bodySb.i(2).p("if(c > CATOFFS[j+1]-CATOFFS[j]-1) continue;").nl();
bodySb.i(2).p("preds[i] += EIGVECS[CATOFFS[j]+c][i];").nl();
bodySb.i(1).p("}").nl();
// Numeric columns
bodySb.i(1).p("for(int j = 0; j < ").p(nums).p("; j++) {").nl();
bodySb.i(2).p("preds[i] += (data[PERMUTE[j" + (cats > 0 ? "+" + cats : "") + "]]-NORMSUB[j])*NORMMUL[j]*EIGVECS[j" + (cats > 0 ? "+ nstart" : "") +"][i];").nl();
bodySb.i(1).p("}").nl();
bodySb.i().p("}").nl();
fileCtxSb.p(model);
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy