hex.schemas.NaiveBayesModelV3 Maven / Gradle / Ivy
package hex.schemas;
import hex.naivebayes.NaiveBayesModel;
import water.api.API;
import water.api.ModelOutputSchema;
import water.api.ModelSchema;
import water.api.TwoDimTableBase;
public class NaiveBayesModelV3 extends ModelSchema {
public static final class NaiveBayesModelOutputV3 extends ModelOutputSchema {
// Output fields; input fields are in the parameters list
@API(help = "Categorical levels of the response")
public String[] levels;
@API(help = "A-priori probabilities of the response")
public TwoDimTableBase apriori;
@API(help = "Conditional probabilities of the predictors")
public TwoDimTableBase[] pcond;
}
// TODO: I think we can implement the following two in ModelSchema, using reflection on the type parameters.
public NaiveBayesV3.NaiveBayesParametersV3 createParametersSchema() { return new NaiveBayesV3.NaiveBayesParametersV3(); }
public NaiveBayesModelOutputV3 createOutputSchema() { return new NaiveBayesModelOutputV3(); }
// Version&Schema-specific filling into the impl
@Override public NaiveBayesModel createImpl() {
NaiveBayesModel.NaiveBayesParameters parms = parameters.createImpl();
return new NaiveBayesModel( model_id.key(), parms, null );
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy