hex.schemas.Word2VecV3 Maven / Gradle / Ivy
package hex.schemas;
import hex.word2vec.Word2Vec;
import hex.word2vec.Word2VecModel.Word2VecParameters;
import water.api.API;
import water.api.ModelParametersSchema;
public class Word2VecV3 extends ModelBuilderSchema {
public static final class Word2VecParametersV3 extends ModelParametersSchema {
static public String[] own_fields = new String[] {
"minWordFreq",
"wordModel",
"normModel",
"negSampleCnt",
"vecSize",
"windowSize",
"sentSampleRate",
"initLearningRate",
"epochs"
};
/**
*
*/
@API(help="Set size of word vectors", required = true)
public int vecSize;
/**
*
*/
@API(help="Set max skip length between words", required = true)
public int windowSize;
/**
*
*/
@API(help="Set threshold for occurrence of words. Those that appear with higher frequency in the training data\n" +
"\t\twill be randomly down-sampled; useful range is (0, 1e-5)", required = true)
public float sentSampleRate;
/**
*
*/
@API(help="Use Hierarchical Softmax or Negative Sampling", values = {"HSM", "NegSampling"}, required = true)
public Word2Vec.NormModel normModel;
/**
*
*/
@API(help="Number of negative examples, common values are 3 - 10 (0 = not used)", required = true)
public int negSampleCnt;
/**
*
*/
@API(help="Number of training iterations to run", required = true)
public int epochs;
/**
*
*/
@API(help="This will discard words that appear less than times", required = true)
public int minWordFreq;
/**
*
*/
@API(help="Set the starting learning rate", required = true)
public float initLearningRate;
/**
*
*/
@API(help="Use the continuous bag of words model or the Skip-Gram model", values = {"CBOW", "SkipGram"}, required = true)
public Word2Vec.WordModel wordModel;
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy